New flu drug stops virus in its tracks

February 21, 2013
This figure shows the life cycle of the flu virus and how the new flu drug agent prevents the virus from spreading from cell to cell by irreversibly inhibiting the action of the neuraminidase like a broken key left in a lock. Credit: Tom Wennekes, UBC

A new class of influenza drug has been shown effective against drug-resistant strains of the flu virus, according to a study led by University of British Columbia researchers.

Published online today in the journal , the study details the development of a new drug candidate that prevents the from spreading from one cell to the next. The drug is shown to successfully treat mice with lethal strains of the flu virus.

In order to spread in the body, the flu virus (blue) first uses a protein, called hemagglutinin, to bind to the receptors (green) on a healthy cell (red).

In order to spread in the body, the flu virus first uses a protein, called hemagglutinin, to bind to the healthy cell's receptors. Once it has inserted its RNA and replicated, the virus uses an enzyme, called neuraminidase, to sever the connection and move on to the next healthy cell.

"Our drug agent uses the same approach as current flu treatments – by preventing neuraminidase from cutting its ties with the infected cell," says UBC Chemistry Prof. Steve Withers, the study's senior author. "But our agent latches onto this enzyme like a broken key, stuck in a lock, rendering it useless."

The estimates that influenza affects three to five million people globally each year, causing 250,000 to 500,000 deaths. In some pandemic years, the figure rose to millions.

The video will load shortly

"One of the major challenges of the current flu treatments is that new strains of the flu virus are becoming resistant, leaving us vulnerable to the next pandemic," says Withers, whose team includes researchers from Canada, the UK, and Australia.

"By taking advantage of the virus's own 'molecular machinery' to attach itself," Withers adds. "The new drug could remain effective longer, since resistant cannot arise without destroying their own mechanism for infection."

Explore further: FDA approves first 4-in-1 flu vaccine

More information: "Mechanism-Based Covalent Neuraminidase Inhibitors with Broad Spectrum Influenza Antiviral Activity," by J.-H; Kim et al, Science, 2013.

Related Stories

FDA approves first 4-in-1 flu vaccine

February 29, 2012
Federal health officials have approved the first vaccine that protects against four strains of the common flu, offering one additional layer of protection against the influenza virus that affects millions each year.

Searchers map the global spread of drug-resistant influenza

September 14, 2011
In the new movie "Contagion," fictional health experts scramble to get ahead of a flu-like pandemic as a drug-resistant virus quickly spreads, killing millions of people within days after they contract the illness.

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.