Promising new method for next-generation live-attenuated viral vaccines against Chikungunya virus

February 21, 2013

Researchers have successfully applied a novel method of vaccine creation for Chikungunya virus (CHIKV) using a technique called large scale random codon re-encoding. Using this approach, a group from the UMR_D 190, Emerging viruses Department in Marseille, France in collaboration with the University of Sydney, Australia, demonstrated that the engineered viruses exhibit a stable phenotype with a significantly decreased viral fitness (i.e., replication capacity), making it a new vaccine candidate for this emerging viral disease. This new report publishes on February 21 in the Open Access journal, PLOS Pathogens.

There is an immense need for the development of vaccines targeting many emerging viral pathogens. CHIKV has been responsible for several million human cases over the last decade and represents a striking example of a re-emerging, arthropod-borne, for which no licensed vaccine exists. Worryingly, one of the vectors of CHIKV, the mosquito , has dispersed into new regions (including temperate areas) resulting in outbreaks of this disease where they had never been previously observed, for example in Italy.

Using the large-scale codon re-encoding method, Antoine Nougairede and colleagues were able to synthetically modify the nucleic acid composition of the virus without modifying the encoded . When this method was applied to poliovirus and , it resulted in a live but attenuated virus that had significant reduction of viral fitness. In contrast with previous studies, which employed a targeted approach of codon re-encoding, this new study demonstrates that a random approach reduced the replicative fitness of CHIKV in both primate and arthropod cells. The employed strategy also prevented the reversion of the attenuated phenotype by mutation or recombination, thus reducing the possibility that the newly created could evolve back to the pathogenic version.

The findings by Nougairede et al. suggest that large-scale codon re-encoding can provide a strong basis for the rapid design of next-generation viral vaccines against emerging viral pathogens, as soon as their genome sequence has been determined. It represents an exciting route to vaccine development because it intrinsically alleviates the likelihood of novel pathogenic properties of the designed live vaccine, and allows modulation of the amount of reduced fitness by altering the terms and degree of the genetic re-encoding. Thus, this strategy potentially allows for the generic development of live attenuated vaccines against many new viral pathogens, with reduced costs and the potential single dose induction of long-term immunity.

Explore further: Exploiting the early immune response in Chikungunya fever promises to provide protection

More information: Nougairede A, De Fabritus L, Aubry F, Gould EA, Holmes EC, et al. (2013) Random Codon Re-encoding Induces Stable Reduction of Replicative Fitness of Chikungunya Virus in Primate and Mosquito Cells. PLoS Pathog 9(2): e1003172. doi:10.1371/journal.ppat.1003172

Related Stories

Exploiting the early immune response in Chikungunya fever promises to provide protection

July 4, 2012
(Medical Xpress) -- Chikungunya fever is a viral disease that has re-emerged to cause epidemics in the Pacific region within the last decade. It is caused by the Chikungunya virus (CHIKV), which is transmitted by mosquitoes ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.