New study of the molecular roots of recurrent bladder infections could lead to a vaccine

February 14, 2013
New study of the molecular roots of recurrent bladder infections could lead to a vaccine
This is an array of mast cells in a whole mount image of the mouse bladder. Credit: Immunity, Chan et al.

Urinary-tract infections are the second most common bacterial infection in humans, and many of them are recurrent. A study published by Cell Press on February 14th in the journal Immunity reveals the cellular and molecular basis of recurrent bladder infections and suggests possible treatment strategies, such as vaccines, to prevent this common problem.

"Our study shows for the first time that the bladder is unable to mount an effective to bacteria, which could explain the high frequency of recurrent infections," says senior study author Soman Abraham of Duke University Medical Center. "These observations give us a new understanding of how immune responses are regulated in the bladder and may have implications for the treatment of recurrent infections."

New study of the molecular roots of recurrent bladder infections could lead to a vaccine
This is a cluster of mast cells found underneath superficial bladder epithelium. Credit: Immunity, Chan et al.

Urinary-tract infections are caused by Escherichia coli (E. coli), and the bladder in particular is prone to recurrent infections, but it is not known why. Some organs, such as the gut, that store waste products are considered "immune-privileged sites," which need to tolerate the presence of . As a result, the immune system does not activate as readily. Similarly, the bladder might require subdued immune responses to tolerate its contents (e.g., proteins in urine), prevent autoimmunity, and minimize . If the bladder were an immune-privileged site, it might explain why it is prone to recurrent infections. But until now, the bladder has not been considered an immune-privileged site, so it has not been clear how this organ balances host defense with microbe tolerance.

In the new study, Abraham and his team found that E. coli persists in the bladders of mice for weeks after initial infection. These mice failed to produce antibodies against E. coli in response to initial infection or recurrent infection, suggesting that was impaired. The persistence of bacteria and suppressed immune responses in the bladder were mediated by the production of the molecule interleukin-10 by mast cells, which previously were known for their role in mounting immune responses against bacteria during the early stages of bladder infection. The results reveal that mast cells play a complex and key role in balancing host defense and tolerance in the bladder and in maintaining this organ as an immune-privileged site.

This is a cartoon showing how bladder mast cells are uniquely able to reduce inflammation by producing IL-10. Credit: Chan et al., Immunity

"The study suggests that provoking a strong immune response in the bladder through vaccination may be a possible strategy to prevent recurrent infections," Abraham says. "Moreover, the findings could influence our understanding of additional conditions involving the bladder, such as cancers."

Explore further: Bacterial toxin may play important role in acute, chronic urinary tract infections

More information: doi: 10.1016/j.immuni.2012.10.019

Related Stories

Bacterial toxin may play important role in acute, chronic urinary tract infections

January 18, 2012
Researchers from the University of Utah have identified a process by which the most common types of urinary tract infection-causing bacteria are able to trigger bladder cell shedding and disable immune responses. According ...

New strategy to combat cystitis

June 3, 2011
One in three women will be faced at least once in her life with cystitis, for some the start of a constantly recurring infection. Cystitis is caused by Escherichia coli bacteria which fasten on to the wall of the bladder ...

Estrogen fights urinary infection in mouse study

January 23, 2013
(Medical Xpress)—Estrogen levels drop dramatically in menopause, a time when the risk of urinary tract infections increases significantly.

Recommended for you

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Using barcodes to trace cell development

August 16, 2017
How do the multiple different cell types in the blood develop? Scientists have been pursuing this question for a long time. According to the classical model, different developmental lines branch out like in a tree. The tree ...

The unexpected role of a well-known gene in creating blood

August 16, 2017
One of the first organ systems to form and function in the embryo is the cardiovascular system: in fact, this developmental process starts so early that scientists still have many unresolved questions on the origin of the ...

Researchers unlock clues to how cells move through the body

August 16, 2017
During its 120-day cycle the circulatory system transports red blood cells and nutrients throughout the human body. This system helps keep the body in balance and fight against infections and diseases by filtering old or ...

Eating habits affect skin's protection against sun

August 15, 2017
Sunbathers may want to avoid midnight snacks before catching some rays.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.