Neurotransmitter serotonin shown to link sleep–wake cycles with the body's natural 24-hour cycle

February 22, 2013
Serotonin links rhythmic activity in the basal forebrain and pre-optic area (BF/POA) to the circadian rhythm signalled by the suprachiasmatic nucleus (SCN), allowing sleep-wake cycles to be regulated over 24 hours. Credit: 2012 Hiroyuki Miyamoto, RIKEN Brain Science Institute

Almost all animals have a hard-wired 'body-clock' that controls biological function in cycles of approximately 24 hours. This is known as the circadian rhythm and, in mammals, it is controlled by signaling in a region of the brain called the suprachiasmatic nucleus (SCN). The SCN regulates a number of functions, including hormonal secretion, metabolism, brain activity and sleep.

Areas of the brain close to the SCN—the basal forebrain and pre-optic area (BF/POA)—control –wake cycles. These short cycles, which are unevenly distributed across 24 hours, are regulated by the circadian rhythm. In order to maintain the overall circadian sleep pattern, these sleep–wake cycles must therefore be linked to the rhythm generated by the SCN. A team led by researchers at the RIKEN Brain Science Institute, Wako, has demonstrated that the is the key to this link.

The team measured neural firing in the SCN and BF/POA of rats to monitor and looked at how this changed when were reduced. The neurotransmitter was depleted in two separate ways: either an enzyme called TSOI was injected to degrade the precursor of serotonin and prevent its production, or an inhibitor of serotonin production called PCPA was added. Both methods had the same effect.

"After serotonin depletion, sleep–wake cycles became fragmented," said lead author Hiroyuki Miyamoto, "Sleep–wake phases were distributed throughout the day—that is, the circadian rhythm of sleep–wake cycles was lost." Underlying this was a disruption of rhythmic neural activity in the BF/POA, caused specifically by the reduction of serotonin levels. The same effect was not seen in the SCN, however, meaning that the circadian rhythm was unaffected while sleep–wake cycles were disturbed. Blocking serotonergic transmission locally in the BF/POA was also sufficient to disrupt sleep–. The researchers concluded that serotonin acts to link the two cycles. "Since the BF/POA is a brain region that directly controls sleep–wake states, we think that coupling of the SCN and BF/POA activity rhythms by serotonin is critical for circadian sleep–wake rhythm," says Miyamoto.

The findings may also help in understanding similar brain rhythms in humans and how they may contribute to disorders. "Similar mechanisms may also work in human brains," says Miyamoto. "Dysfunction of the serotonin system has been implicated in depression and patients frequently complain of insomnia. Thus, our study may provide insights into the relationships between serotonin, sleep, circadian rhythms and depression."

Explore further: Energy levels link sleep control mechanisms

More information: Miyamoto, H., Nakamaru-Ogiso, E., Hamada, K. & Hensch, T.K. Serotonergic integration of circadian clock and ultradian sleep-wake cycles. Journal of Neuroscience 32, 14794–14803 (2012). www.jneurosci.org/content/32/42/14794.abstract

Related Stories

Energy levels link sleep control mechanisms

May 25, 2012
Sleep, or lack of it, can determine level of cognitive performance which is linked with accidents as well as increased risk of serious health problems. Links between cell energy levels, gene transcription and sleep rhythms ...

Brain cell changes may cause sleep troubles in aging

April 24, 2012
Older animals show cellular changes in the brain "clock" that sets sleep and wakeful periods, according to new research in the April 25 issue of The Journal of Neuroscience. The findings may help explain why elderly people ...

Brain oscillations reveal that our senses do not experience the world continuously

May 14, 2012
(Medical Xpress) -- It has long been suspected that humans do not experience the world continuously, but rather in rapid snapshots.

Researchers observe disruptions of daily rhythms in Alzheimer's patients' brains

April 27, 2011
Twenty-four hour cycles, known as circadian rhythms, are important for proper body functions, including for normal brain function and mental health. Disruptions of circadian rhythms and sleep-wake cycles have been observed ...

Recommended for you

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

Illuminating neural pathways in the living brain

July 24, 2017
Using light alone, scientists from the Max Planck Institute of Neurobiology in Martinsried are now able to reveal pairs or chains of functionally connected neurons under the microscope. The new optogenetic method, named Optobow, ...

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.