Scientists identify molecular system that could help develop potential treatments for neurodegenerative diseases

February 21, 2013

Scientists from the University of Southampton have identified the molecular system that contributes to the harmful inflammatory reaction in the brain during neurodegenerative diseases.

An important aspect of chronic neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's or prion disease, is the generation of an innate within the brain.

Results from the study open new avenues for the regulation of the inflammatory reaction and provide new insights into the understanding of the biology of , which play a leading role in the development and maintenance of this reaction.

Dr Diego Gomez-Nicola, from the CNS Inflammation group at the University of Southampton and lead author of the paper, says: "The understanding of microglial biology during neurodegenerative diseases is crucial for the development of potential to control the harmful inflammatory reaction. These potential interventions could modify or arrest like Alzheimer disease.

"The future potential outcomes of this line of research would be rapidly translated into the clinics of , and would improve the quality of life of patients with these diseases."

Microglial cells multiply during different , although little is known about to what extent this accounts for the expansion of the microglial population during the development of the disease or how it is regulated.

Writing in The Journal of Neuroscience, scientists from the University of Southampton describe how they used a laboratory model of neurodegeneration (murine prion disease), to understand the brain's response to microglial proliferation and dissected the molecules regulating this process. They found that signalling through a receptor called CSF1R is a key for the expansion of the microglial population and therefore drugs could target this.

Dr Diego Gomez-Nicola adds: "We have been able to identify that this molecular system is active in human Alzheimer's disease and variant Creutzfeldt–Jakob disease, pointing to this mechanism being universal for controlling microglial proliferation during neurodegeneration. By means of targeting CSF1R with selective inhibitors we have been able to delay the clinical symptoms of experimental prion disease, also preventing the loss of neurons."

Explore further: Brain inflammation likely key initiator to prion and Parkinson's disease

Related Stories

Brain inflammation likely key initiator to prion and Parkinson's disease

November 29, 2012
In a recent publication, researchers of the Computational Biology group at the Luxembourg Centre for Systems Biomedicine showed that neuro-inflammation plays a crucial role in initiating prion disease.

Researchers 'switch off' neurodegeneration in mice

May 8, 2012
Researchers at the Medical Research Council (MRC) Toxicology Unit at the University of Leicester have identified a major pathway leading to brain cell death in mice with neurodegenerative disease. The team was able to block ...

Recommended for you

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.