New tool in the fight against tropical diseases

February 26, 2013, University of Cambridge

A novel tool exploits baker's yeast to expedite the development of new drugs to fight multiple tropical diseases, including malaria, schistosomiasis, and African sleeping sickness. The unique screening method uses yeasts which have been genetically engineered to express parasite and human proteins to identify chemical compounds that target disease-causing parasites but do not affect their human hosts.

affect millions of people annually, often in the most deprived parts of the world. Every year, malaria alone infects over 200 million people, killing an estimated 655,000 individuals, mostly under the age of five. Unfortunately, our ability to treat malaria, which is caused by , has been compromised by the emergence of parasites that are resistant to the most commonly used drugs. There is also a pressing need for new treatments targeting other parasitic diseases, which have historically been neglected.

Currently, drug-screening methods for these diseases use live, whole parasites. However, this method has several limitations. First, it may be extremely difficult or impossible to grow the parasite, or at least one of its life cycle stages, outside of an . (For example, the parasite Plasmodium vivax, responsible for the majority of cases of malaria in South America and South-East Asia, cannot be continuously cultivated in laboratory conditions.) Second, the current methods give no insight into how the compound interacts with the parasite or the toxicity of the compound to humans.

In an effort to develop to fight parasitic diseases, scientists from the University of Cambridge have collaborated with at Manchester University to create a cheaper and more efficient anti-parasitic drug-screening method. The clever screening method identifies which target the enzymes from parasites but not those from their human hosts, thus enabling the early elimination of compounds with potential side effects.

Professor Steve Oliver, from the Cambridge Systems Biology Centre and Department of Biochemistry at the University of Cambridge, said: "Our provides a faster and cheaper approach that complements the use of whole parasites for screening. This means that fewer experiments involving the parasites themselves, often in infected animals, need to be carried out."

The new method uses genetically engineered baker's yeast, which either expresses important parasite proteins or their human counterparts. The different yeast cells are labelled with fluorescent proteins to monitor the growth of the individual yeast strains while they grow in competition with one another. High-throughput is provided by growing three to four different yeast strains together in the presence of each candidate compound. This approach also provides high sensitivity (since drug-sensitive yeasts will lose out to drug-resistant strains in the competition for nutrients), reduces costs, and is highly reproducible.

The scientists can then identify the chemical compounds that inhibit the growth of the yeast strains carrying parasite-drug targets, but fail to inhibit the corresponding human protein (thus excluding compounds that would cause side-effects for humans taking the drugs). The compounds can then be explored for further development into anti-parasitic drugs.

In order to demonstrate the effectiveness of their screening tool, the scientists tested it on Trypanosoma brucei, the parasite that causes . By using the engineered yeasts to screen for chemicals that would be effective against this parasite, they identified potential compounds and tested them on live parasites cultivated in the lab. Of the 36 compounds tested, 60 per cent were able to kill or severely inhibit the growth of the parasites (under standard lab conditions).

Dr Elizabeth Bilsland, the lead author of the paper from the University of Cambridge, said: "This study is only a beginning. It demonstrates that we can engineer a model organism, yeast, to mimic a disease organism and exploit this technology to perform low-cost, fully-automated drug screens to select and optimise drug candidates as well as identify and validate novel drug targets."

"In the future, we hope to engineer entire pathways from pathogens into yeast and also to construct yeast strains that mimic diseased states of human cells."

Explore further: Screening effort turns up multiple potential anti-malaria compounds

More information: The research is published today, 27 February, in the journal Open Biology.

Related Stories

Screening effort turns up multiple potential anti-malaria compounds

August 4, 2011
Numerous potential anti-malarial candidate drugs have been uncovered by investigators from the National Institute of Allergy and Infectious Diseases (NIAID) and the National Human Genome Research Institute (NHGRI), both parts ...

Scientists show that HIV drugs can also target tropical parasites

May 2, 2011
Scientists have discovered that drugs used to treat HIV may also one day become lifesaving drugs targeted at parasitic diseases such as leishmaniasis and malaria. According to new research published in The FASEB Journal, ...

Targeting tropical parasites

May 11, 2011
Drugs used to treat HIV may form templates for lifesaving drugs targeted at malaria and other parasitic diseases, according to a new study from the University.

Novel anti-malarial drug target identified

July 19, 2012
An international team of scientists, led by researchers from the Department of Pediatrics at the University of California, San Diego School of Medicine, have identified the first reported inhibitors of a key enzyme involved ...

Modified bone drug kills malaria parasite in mice

February 27, 2012
A chemically altered osteoporosis drug may be useful in fighting malaria, researchers report in a new study. Unlike similar compounds tested against other parasitic protozoa, the drug readily crosses into the red blood cells ...

New opportunity for rapid treatment of malaria

October 25, 2012
(Medical Xpress)—Researchers have identified a new means to eradicate malaria infections by rapidly killing the blood-borne Plasmodium parasites that cause the disease.

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.