Study points to possible cause of, and treatment for, non-familial Parkinson's

February 6, 2013

Columbia University Medical Center (CUMC) researchers have identified a protein trafficking defect within brain cells that may underlie common non-familial forms of Parkinson's disease. The defect is at a point of convergence for the action of at least three different genes that had been implicated in prior studies of Parkinson's disease. Whereas most molecular studies focus on mutations associated with rare familial forms of the disease, these findings relate directly to the common non-familial form of Parkinson's. The study was published today in the online edition of the journal Neuron.

The defective pathway is called the "retromer" pathway, in part because it can guide the reutilization of key molecules by moving them back from the to internal stores. In this study, defects in the retromer pathway also appear to have profound effects on the cell's disposal machinery, which may explain why Parkinson's disease ultimately accumulate large . The trafficking defects associated with Parkinson's can be reversed by increasing retromer pathway activity, suggesting a possible . No current therapies for Parkinson's alter the progression of the disease.

The researchers also found evidence that, even in unaffected individuals who simply carry common genetic variants associated with an increased risk of Parkinson's disease, these are at work. This supports the notion that early treatment approaches will be important in tackling Parkinson's disease.

"Taken together, the findings suggest that drugs that target the retromer pathway could help prevent or treat Parkinson's," said study leader Asa Abeliovich, MD, PhD, associate professor of pathology and and of neurology in the Taub Institute for Research on Alzheimer's Disease and the at CUMC.

In recent years, through genome-wide association studies (GWAS), researchers have identified about 10 common genetic variants that appear to have small effects on the risk of non-familial Parkinson's, However, it has been hard to delve deeper into the impact of these variants. "When you look at patient at autopsy, it's usually too late—all the critical dopamine are long gone and the damage has been done," said Dr. Abeliovich.

In the current study, Dr. Abeliovich and his CUMC colleagues used an unusually broad array of approaches—including analyses of Parkinson's disease-associated genetic variations, patient brain tissue, in vitro tissue culture studies of brain neurons, and fruit fly (Drosophila) models that harbor genetic variants related to those associated with Parkinson's disease.

The researchers found that common variants in two genes previously linked to Parkinson's disease, LRRK2 and RAB7L1, led to an unexpectedly similar impact on human brain tissue. The effects of the variants were found to be highly overlapping, pointing to a common pathway of action. Prominent cellular changes were observed in the retromer pathway, which is involved in the trafficking of proteins from the Golgi apparatus (which packages proteins for delivery to other cell components) to the lysosomes (which recycle proteins and other molecules). Mutations that affect the retromer pathway have also been found in familial Parkinson's disease. Earlier studies from CUMC's Taub Institute have shown that genetic variants in genes associated with retromer function are linked to Alzheimer's disease and retromer component levels appear altered in Alzheimer's disease brains, suggesting a broader role for retromer dysfunction in neurodegenerative diseases of aging, according to Dr. Abeliovich.

The impact of the RAB7L1 and LRRK2 variants was apparent even in individuals with no signs or symptoms of Parkinson's disease. This suggests that there is a pre-disease state in unaffected carriers of the two genetic variants that favors early disease onset and that, in theory, could be targeted therapeutically.

The CUMC researchers also demonstrated that overexpression of one of the variants, RAB7L1, can overcome the effects of the other variant. Similarly, expression of VPS35, a gene involved in the retromer pathway, can suppress LRRK2 mutant pathology. "It will be interesting to look for drugs that directly target these retromer components or that more generally promote flow through the pathway," said Dr. Abeliovich.

Explore further: Mechanism that leads to sporadic Parkinson's disease identified

More information: The title of the paper is "RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk."

Related Stories

Mechanism that leads to sporadic Parkinson's disease identified

September 25, 2012
Researchers in the Taub Institute at Columbia University Medical Center (CUMC) have identified a mechanism that appears to underlie the common sporadic (non-familial) form of Parkinson's disease, the progressive movement ...

A mutation in a protein-sorting gene is linked with Parkinson's disease

July 14, 2011
Parkinson disease (PD) is a devastating incurable disease in which degeneration of dopamine neurons in the brainstem leads to tremors and problems with movement and coordination. An increasing proportion of patients appear ...

Study finds genetic variation that protects against Parkinson's disease

August 31, 2011
An international team of researchers led by neuroscientists at Mayo Clinic in Florida has found a genetic variation they say protects against Parkinson's disease. The gene variants cut the risk of developing the disease by ...

Poor recycling of BACE1 enzyme could promote Alzheimer's disease

November 21, 2011
Sluggish recycling of a protein-slicing enzyme could promote Alzheimer's disease, according to a study published online on November 21 in The Journal of Cell Biology.

Scientists discover genetic mutation that causes Parkinson's disease

September 8, 2011
A large team of international researchers have identified a new genetic cause of inherited Parkinson's disease that they say may be related to the inability of brain cells to handle biological stress. The study, published ...

Molecular 'on-off' switch for Parkinson's disease discovered

May 23, 2012
(Medical Xpress) -- Scientists at the Medical Research Council (MRC) Protein Phosphorylation Unit at the University of Dundee have discovered a new molecular switch that acts to protect the brain from developing Parkinson's ...

Recommended for you

Parkinson's is partly an autoimmune disease, study finds

June 21, 2017
Researchers have found the first direct evidence that autoimmunity—in which the immune system attacks the body's own tissues—plays a role in Parkinson's disease, the neurodegenerative movement disorder. The findings raise ...

Predicting cognitive deficits in people with Parkinson's disease

June 20, 2017
Parkinson's disease (PD) is commonly thought of as a movement disorder, but after years of living with PD approximately twenty five percent of patients also experience deficits in cognition that impair function. A newly developed ...

Pre-clinical study suggests Parkinson's could start in gut endocrine cells

June 15, 2017
Recent research on Parkinson's disease has focused on the gut-brain connection, examining patients' gut bacteria, and even how severing the vagus nerve connecting the stomach and brain might protect some people from the debilitating ...

Hi-res view of protein complex shows how it breaks up protein tangles

June 15, 2017
Misfolded proteins are the culprits behind amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and other neurodegenerative brain disorders. These distorted proteins are unable to perform their normal ...

CRISPR tech leads to new screening tool for Parkinson's disease

June 5, 2017
A team of researchers at the University of Central Florida is using breakthrough gene-editing technology to develop a new screening tool for Parkinson's disease, a debilitating degenerative disorder of the nervous system. ...

Infection with seasonal flu may increase risk of developing Parkinson's disease

May 30, 2017
Most cases of Parkinson's have no known cause, and researchers continue to debate and study possible factors that may contribute to the disease. Research reported in the journal npj Parkinson's Disease suggests that a certain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.