Ыtudy documents head and neck cancer molecular tumor subtypes

February 22, 2013
This is a gene expression heatmap illustrating four molecular subtypes in HNSCC. Credit: Hayes Lab, UNC School of Medicine.

Head and neck squamous cell carcinoma (HNSCC) is the seventh most common form of cancer in the United States, but other than an association with the human papillomavirus, no validated molecular profile of the disease has been established. By analyzing data from DNA microarrays, a UNC-led team has completed a study that confirms the presence of four molecular classes of the disease and extends previous results by suggesting that there may be an underlying connection between the molecular classes and observed genomic events, some of which affect known cancer genes. The clinical relevance of the classes and certain genomic events was demonstrated, thus paving the way for further studies and possible targeted therapies.

The study was published in the Feb. 22, 2013 issue of the journal .

Neil Hayes, MD, MPH, associate professor of medicine and senior author, says, "Cancer is a disease caused by alteration in the DNA and of tumors. A cancer results when broken molecules initiate a cascade of abnormal signals that ultimately results in abnormal growth and spread of tissues that should be under tight control within the body.

"However, most common tumors, including , have relatively little information in the public record as to how these signals coordinate to create different patterns of abnormalities. This study is among the largest ever published to document reproducible molecular tumor subtypes. Subtypes, such as those we describe, represent attractive models to understand and attack cancers for treatment and prognosis."

Dr. Hayes is a member of UNC Lineberger Comprehensive Cancer Center and national co-chair of the Data Analysis Sub-Group for The Cancer Genome Atlas, a program of the National Institutes of Health.

The team, composed of investigators from UNC and five other institutions, analyzed a set of nearly 140 HNSCC samples. By searching for recurrent patterns known as gene expression signatures, they were able to detect four gene expression subtypes. The subtypes are termed basal, mesenchymal, atypical, and classical based on similarities to established gene expression subtypes in other tumor types and expression patterns of specific genes.

In spite of being the seventh most common form of cancer in the United States, HNSCC is relatively under-studied in comparison to other tumor types, e.g. breast and lung. By leveraging the similarities found in the gene expression subtypes, the results of this study provide a connection to a range of well-established findings and additional insight into the disease.

Explore further: Molecular subtypes and genetic alterations may determine response to lung cancer therapy

Related Stories

Molecular subtypes and genetic alterations may determine response to lung cancer therapy

May 11, 2012
Cancer therapies targeting specific molecular subtypes of the disease allow physicians to tailor treatment to a patient's individual molecular profile. But scientists are finding that in many types of cancer the molecular ...

Researchers identify genes that may help in ovarian cancer diagnosis and prognosis

April 9, 2012
Scientists from Duke University Medical Center have determined that genes acting as molecular "on/off" switches can define clinically relevant molecular subtypes of ovarian cancer, providing ideal potential targets for use ...

Different subtypes of triple-negative breast cancer respond to different therapies

June 27, 2011
Vanderbilt-Ingram Cancer Center researchers have identified six subtypes of an aggressive and difficult-to-treat form of breast cancer, called "triple-negative breast cancer (TNBC)."

Study identifies genes linked to resistance to breast cancer chemotherapy

June 11, 2012
A study led by Vanderbilt-Ingram Cancer Center (VICC) investigators has identified a gene expression pattern that may explain why chemotherapy prior to surgery isn't effective against some tumors and suggests new therapy ...

Genetic differences distinguish stomach cancers, treatment response

August 1, 2011
Stomach cancer is actually two distinct disease variations based on its genetic makeup, and each responds differently to chemotherapy, according to an international team of scientists led by researchers at Duke-National University ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.