Breakthrough in battle against leukemia

March 13, 2013, Griffith University

Scientists at Griffith University's Institute for Glycomics and The Saban Research Institute of Children's Hospital Los Angeles have discovered a critical weakness in leukaemic cells, which may pave the way to new treatments.

The research team has demonstrated that leukaemic cells can be eradicated by removing a carbohydrate modification displayed on the cell's surface.

Director of Griffith University's Institute for Glycomics, Professor Mark von Itzstein is the Australian team leader. He said the discovery is an important advance against leukaemia, a cancer of malignant that multiply uncontrollably. Acute (ALL) is the most common .

"We have found that the leukaemic cell has an altered carbohydrate decoration compared to normal cells and this also conveys resistance to drug treatment," Professor von Itzstein said.

"We have now shown that with the removal of this carbohydrate alteration the cells die."

Professors Nora Heisterkamp and John Groffen, leaders of the US-based team, Professor von Itzstein and their colleagues have published their research findings in the latest edition of the internationally acclaimed Journal of Experimental Medicine.

Professor von Itzstein said the research could lead to new ways to fight the disease, particularly where it has become treatment resistant.

"Up until 40 years ago, only one child in five survived ALL", but advances in chemotherapy have changed that outcome and now nearly 80 percent of children with ALL will be cured," Professor von Itzstein said.

"For the remaining 20 percent, however, the disease returns necessitating additional rounds of . Unfortunately, most relapsed patients die within one year because their are resistant to chemotherapy.

"In the future, we hope that this novel, structural approach to treating ALL may offer an effective for children battling drug-resistant forms of the disease."

Professor von Itzstein said the discovery had been made possible only through a unique sharing of research expertise.

"These results are the culmination of an international collaboration that commenced only a few years ago when Professor Groffen spent study leave in the Institute for Glycomics on Griffith's Gold Coast Campus," Professor von Itzstein said.

"It has been a wonderful opportunity to combine the US team's internationally acclaimed expertise in leukaemia with our own expertise in carbohydrate science.

"By exploiting this 'Achilles heel' in these leukaemic cells, our collaborative research efforts are now focused on the development of a new type of drug therapy that targets this carbohydrate modification."

Patron of the Institute for Glycomics Leukaemia project in Australia, Air Chief Marshal Angus Houston AC, AFC (Ret'd), said he was delighted with this latest advance.

"These new findings provide the groundwork for a new fight against this terrible disease," he said.

Explore further: Stem cell treatment to prevent leukemia returning is a step closer, say scientists

Related Stories

Stem cell treatment to prevent leukemia returning is a step closer, say scientists

June 2, 2011
Researchers at King's College London have identified a way of eliminating leukaemic stem cells, which could lead to new treatments that may enable complete remission for leukaemia patients. An early study in mice has shown ...

Researchers find new way of killing leukaemia cells

March 4, 2013
(Medical Xpress)—Researchers at the University of Dundee have identified a new way of killing cancer cells in patients with a certain kind of leukaemia, which could lead to the development of safer anti-leukaemic drugs.

Scientists seek out cancer cells hiding from treatment

January 15, 2013
Scientists hope to improve leukaemia treatment by investigating how cancer cells use 'hiding places' in the body to avoid chemotherapy drugs.

Cell death researchers identify new Achilles heel in acute myeloid leukemia

January 17, 2012
Melbourne researchers have discovered that acute myeloid leukaemia (AML), an aggressive blood cancer with poor prognosis, may be susceptible to medications that target a protein called Mcl-1.

Recommended for you

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.