Cell metabolism: Muscle loss can be caused by mitochondrial degradation induced by protein Mul1

March 13, 2013
The fragmentation of mitochondria (red) in muscle cells is promoted by Mul1 protein (green). Credit: 2012 Elsevier

Muscle withering can occur as part of the progression of many diseases, including cancer and muscular dystrophy, as well as during the normal aging process. Cellular organelles known as mitochondria provide energy for muscle contraction, and their fragmentation within muscle cells can lead to muscle wasting. Now, a team of researchers led by Ravi Kambadur at the A*STAR Singapore Institute for Clinical Sciences has identified a key role for mitochondrial E3 ubiquitin protein ligase 1 (Mul1) in mitochondrial fragmentation. Such fragmentation occurs in response to stimuli that cause muscle loss.

Starvation and the use of anti-inflammatory can induce muscle wasting in animals. In cell culture experiments, the researchers found that these same stimuli could cause mitochondrial dysfunction and fragmentation in muscle cells. More specifically, these stimuli increased the expression of the Mul1 protein. In turn, this led to a decrease in the levels of a protein called Mfn2, resulting in the mitochondria breaking apart. Interestingly, normal levels of Mfn2 expression led mitochondria to fuse with one another.

When the researchers overexpressed Mul1 in muscle cells, instead of fusing with other mitochondria, these organelles merged with a cellular compartment called the in which proteins and organelles are degraded. Exposing muscle cells to starvation or steroids also led to fusion between mitochondria and lysosomes. However, Kambadur and co-workers found that they could block this fusion by silencing the expression of Mul1, effectively preventing degradation of the mitochondria.

Kambadur and his team observed that, in keeping with its known role of marking proteins to be degraded with ubiquitin tags, Mul1 binds and adds ubiquitin groups to Mfn2, leading to Mfn2 degradation. They then showed that once degraded, Mfn2 can no longer drive mitochondrial fusion, which tips the balance such that the mitochondria begin to fragment.

When Mul1 was overexpressed in the muscle of mice, the researchers observed a drop in muscle weight. Upon starvation, mice normally experience , but Kambadur and co-workers were able to block this wasting by preventing the increased expression of Mul1 that is normally triggered by starvation. These findings indicate that Mul1 is required for the mitochondrial fragmentation and muscle loss caused by stimuli that normally break down muscle.

Next, the team will focus on determining whether Mul1 also induces muscle wasting in human under various nutrition stress conditions. "If it does," says Kambadur, "the major clinical application, I believe, would be treatment of anorexia that normally leads to heavy muscle wasting."

Explore further: Study finds ways to prevent muscle loss, obesity and diabetes

More information: Lokireddy, S., Wijesoma, I. W., Teng, S., Bonala, S., Gluckman, P. D. et al. The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metabolism 16, 613–624 (2012). www.cell.com/cell-metabolism/a … -4131%2812%2900405-6

Related Stories

Study finds ways to prevent muscle loss, obesity and diabetes

December 19, 2012
A research study from Nanyang Technological University (NTU) has yielded important breakthroughs on how the body loses muscle, paving the way for new treatments for aging, obesity and diabetes.

Fewer mitochondria in offspring of parents with diabetes

March 26, 2012
(HealthDay) -- Normal-weight, insulin-resistant individuals whose parents have type 2 diabetes have fewer mitochondria in their muscles due to lower expression of lipoprotein lipase (LPL), according to a study published in ...

Saturated fatty acids lead to mitochondrial dysfunction and insulin resistance

January 20, 2012
Excessive levels of certain saturated fatty acids cause mitochondria to fragment, leading to insulin resistance in skeletal muscle, a precursor of type 2 diabetes, according to a paper in the January issue of the journal ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.