Major advance in understanding risky but effective multiple sclerosis treatment

March 26, 2013

A new study by Multiple Sclerosis researchers at three leading Canadian centres addresses why bone marrow transplantation (BMT) has positive results in patients with particularly aggressive forms of MS. The transplantation treatment, which is performed as part of a clinical trial and carries potentially serious risks, virtually stops all new relapsing activity as observed upon clinical examination and brain MRI scans. The study reveals how the immune system changes as a result of the transplantation. Specifically, a sub-set of T cells in the immune system known as Th17 cells, have a substantially diminished function following the treatment. The finding to be published in the upcoming issue of Annals of Neurology and currently in the early online version, provides important insight into how and why BMT treatment works as well as how relapses may develop in MS.

"Our study examined why patients essentially stop having relapses and new after the treatment, which involves ablative chemotherapy followed by using the patient's own cells," said Prof. Amit Bar-Or, the principle investigator of the study, who is a neurologist and MS researcher at The Montreal Neurological Institute and Hospital -The Neuro, McGill University, and Director of The Neuro's Experimental Therapeutics Program. "We discovered differences between the immune responses of these patients before and after treatment, which point to a particular type of as the potential perpetrator of relapses in MS."

"Although the immune system that re-emerges in these patients from their is generally intact, we identified a selectively diminished capacity of their Th17 immune responses following therapy - which could explain the lack of new MS disease activity. In untreated patients, these Th17 cells may be particularly important in breaching the blood-brain-barrier, which normally protects the . This interaction of Th17 cells with the blood-brain barrier can facilitate subsequent invasion of other immune cells such as Th1 cells, which are thought to also contribute to brain cell injury.

Twenty-four patients participated in the overall clinical trial as part of the 'Canadian MS BMT' clinical trial, coordinated by Drs. Mark Freedman and Harry Atkins at the Ottawa General Hospital. The new discovery, made in a subset of patients participating in the clinical trial, was based on immunological studies carried out jointly in laboratories at The Neuro and the Université de Montréal. Results of this study not only show the clinical benefits of BMT treatment, but also open a unique window into the immunological mechanisms underlying relapses in MS. Th17 cells could be the immune cells associated with the initiation of new relapsing disease activity in this group of patients with aggressive MS. This finding deepens our understanding of MS and could guide the development of personalized medicine with a more favourable risk/benefit profile.

Among the patients treated in the Canadian MS BMT clinical trial, was Dr. Alexander Normandin, a family doctor, who was a third- year McGill medical student getting ready for his surgery exams when he first learned he had MS, "I was so engrossed in my studies that I didn't pay attention to the first sign but within a few days of waking up with a numb temple, my face felt frozen. I learned that I had a very aggressive form of MS and would probably be in a wheelchair within a year. It was a brutal blow. I became patient #19 – of only 24 for this experimental treatment. My immune system was knocked out and then rebooted with my stem cells. Today, my MS has stabilized. I now have this disease under control and I take it one day at a time."

Explore further: Researchers identify a promising target for multiple sclerosis treatments

More information: onlinelibrary.wiley.com/doi/10 … 2/ana.23784/abstract

Related Stories

Researchers identify a promising target for multiple sclerosis treatments

March 19, 2013
A team of basic and clinical scientists led by the University of Montreal Hospital Research Centre's (CRCHUM) Dr. Nathalie Arbour has opened the door to significantly improved treatments for the symptoms of Multiple Sclerosis ...

Cancer drug a possible treatment for multiple sclerosis

February 21, 2013
(Medical Xpress)—A drug that is currently used for cancer can relieve and slow down the progression of the autoimmune disease multiple sclerosis (MS) in rats, according to a new study published in PLOS ONE. The discovery, ...

Recommended for you

Research reveals 'exquisite selectivity' of neuronal wiring in the cerebral cortex

August 21, 2017
The brain's astonishing anatomical complexity has been appreciated for over 100 years, when pioneers first trained microscopes on the profusion of branching structures that connect individual neurons. Even in the tiniest ...

Afternoon slump in reward response

August 21, 2017
Activation of a reward-processing brain region peaks in the morning and evening and dips at 2 p.m., finds a study of healthy young men published in The Journal of Neuroscience. This finding may parallel the drop in alertness ...

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.