Researchers find novel mechanism regulating replication of insulin-producing beta cells

March 26, 2013

Bringing scientists a step closer to new treatments for diabetes, researchers at the University of Pittsburgh School of Medicine and The Mount Sinai Medical Center have discovered a novel mechanism that regulates the replication of insulin-producing beta cells in the pancreas. The findings were recently published online ahead of print in Diabetes, a journal of the American Diabetes Association.

Regenerating beta cells to restore has moved to center stage in the quest for therapies for both Type 1 and 2 diabetes, said lead author Nathalie Fiaschi-Taesch, Ph.D., assistant professor, Division of , Pitt School of Medicine.

"Ideally, we would be able to do this by collecting cells from donor pancreatic tissue and growing them in the lab or better yet, giving a patient a pill to stimulate their own beta cells to replicate," she said. "In the past, this has proven to be very challenging. Our findings provide new insights into how one may be able to do this. "

After a 2009 paper in which a team led by Dr. Fiaschi-Taesch and Andrew F. Stewart, M.D., formerly of Pitt and now Irene and Dr. Arthur M. Fishberg Professor of Medicine and director of the , Obesity and Metabolism Institute at The Mount Sinai Medical Center in New York, successfully induced human beta cells to replicate in the lab by elevating the level of a protein called cdk-6. In two current reports in Diabetes, they continued to examine the workings of the cell cycle proteins involved in the replication machinery.

What they found surprised them. Scientists had assumed the proteins resided in the cell's nucleus, where they could act upon genes and molecules to stimulate – or in the case of , prevent – cell replication. Their experiments showed that the cell cycle proteins were actually in the cell's cytoplasm, the fluid around the nucleus and contained within the cell membrane.

"It's like looking under the hood of a car for the engine and instead finding all the parts scattered around the back seat: it's no wonder the car won't go," Dr. Stewart explained. "Now we have to find ways to get those parts hooked up and back under the hood so that they can once again function as the engine that drives beta cell replication."

Increasing levels of cdk-6 led that molecule and other key (or critical) cell cycle proteins to move into the nucleus to foster replication, but in the quiescent or non-replicating cell, the only ones that remained in the nucleus were inhibitors of replication. Understanding how and why those inhibiting proteins block replication could in turn lead to ways to block their activity, providing a novel approach for reviving beta cell regeneration, Dr. Fiaschi-Taesch said.

Dr. Stewart noted that the relocation of cell cycle proteins outside the nucleus in the beta cell might hold true for other kinds of cells.

"It makes me curious about whether we can turn replication back on in other cells that aren't known to regenerate, such as neurons," he said. "I'd also like to know why these proteins continue to be produced by the quiescent cell if they aren't playing a role in ."

In the second Diabetes paper, the team described the intracellular localization of all the proteins in the beta cell, a biochemical atlas that could guide other researchers.

Explore further: Key signal that prompts production of insulin-producing beta cells points way toward diabetes cure

Related Stories

Key signal that prompts production of insulin-producing beta cells points way toward diabetes cure

September 12, 2011
Researchers at the Hebrew University of Jerusalem have identified the key signal that prompts production of insulin-producing beta cells in the pancreas -- a breakthrough discovery that may ultimately help researchers find ...

The role of beta cell regeneration in type 2 diabetes

October 10, 2012
The World Health Organization (WHO) has declared type 2 diabetes as the epidemic of the 21st century. A study is focusing on understanding the mechanisms underlying insulin resistance and the role of beta-cell regeneration.

Recommended for you

People who drink 3 to 4 times per week less likely to develop diabetes than those who never drink: study

July 27, 2017
Frequent alcohol consumption is associated with a reduced risk of diabetes in both men and women, according to a new study published in Diabetologia (the journal of the European Association for the Study of Diabetes), with ...

Diabetes can be tracked with our Google searches

July 26, 2017
The emergence of Type 2 Diabetes could be more effectively monitored using our Google searches—helping public health officials keep track of the disease and halt its spread—according to research by the University of Warwick.

Scientists discover a new way to treat type 2 diabetes

July 21, 2017
Medication currently being used to treat obesity is also proving to have significant health benefits for patients with type 2 diabetes. A new study published today in Molecular Metabolism explains how this therapeutic benefit ...

Alzheimer's drug cuts hallmark inflammation related to metabolic syndrome by 25 percent

July 20, 2017
An existing Alzheimer's medication slashes inflammation and insulin resistance in patients with metabolic syndrome, a potential therapeutic intervention for a highly dangerous condition affecting 30 percent of adults in the ...

Diabetes or its precursor affects 100 million Americans

July 19, 2017
Almost one-third of the US population—100 million people—either has diabetes or its precursor condition, known as pre-diabetes, said a government report Tuesday.

One virus may protect against type 1 diabetes, others may increase risk

July 11, 2017
Doctors can't predict who will develop type 1 diabetes, a chronic autoimmune disease in which the immune system destroys the cells needed to control blood-sugar levels, requiring daily insulin injections and continual monitoring.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.