MRI shows brain abnormalities in migraine patients

March 26, 2013, Radiological Society of North America

A new study suggests that migraines are related to brain abnormalities present at birth and others that develop over time. The research is published online in the journal Radiology.

Migraines are intense, throbbing headaches, sometimes accompanied by nausea, vomiting and sensitivity to light. Some patients experience auras, a change in visual or sensory function that precedes or occurs during the migraine. More than 300 million people suffer from migraines worldwide, according to the .

Previous research on migraine patients has shown atrophy of cortical regions in the brain related to pain processing, possibly due to chronic stimulation of those areas. Cortical refers to the cortex, or outer layer of the brain.

Much of that research has relied on voxel-based , which provides estimates of the brain's cortical volume. In the new study, Italian researchers used a different approach: a surface-based MRI method to measure cortical thickness.

"For the first time, we assessed cortical thickness and surface area in patients with migraine, which are two components of cortical volume that provide different and complementary pieces of information," said Massimo Filippi, M.D., director of the Neuroimaging Research Unit at the University Ospedale San Raffaele and professor of neurology at the University Vita-Salute's San Raffaele Scientific Institute in Milan. "Indeed, cortical surface area increases dramatically during late fetal development as a consequence of cortical folding, while cortical thickness changes dynamically throughout the entire as a consequence of development and disease."

Dr. Filippi and colleagues used (MRI) to acquire T2-weighted and 3-D T1-weighted from 63 migraine patients and 18 healthy controls. Using special software and statistical analysis, they estimated cortical thickness and surface area and correlated it with the patients' clinical and radiologic characteristics.

Compared to controls, migraine patients showed reduced cortical thickness and surface area in regions related to pain processing. There was only minimal anatomical overlap of cortical thickness and cortical surface area abnormalities, with cortical surface area abnormalities being more pronounced and distributed than cortical thickness abnormalities. The presence of aura and white matter hyperintensities—areas of high intensity on MRI that appear to be more common in people with migraine—was related to the regional distribution of cortical thickness and surface area abnormalities, but not to disease duration and attack frequency.

"The most important finding of our study was that cortical abnormalities that occur in patients with migraine are a result of the balance between an intrinsic predisposition, as suggested by cortical surface area modification, and disease-related processes, as indicated by abnormalities," Dr. Filippi said. "Accurate measurements of cortical abnormalities could help characterize migraine patients better and improve understanding of the pathophysiological processes underlying the condition."

Additional research is needed to fully understand the meaning of cortical abnormalities in the pain processing areas of migraine patients, according to Dr. Filippi.

"Whether the abnormalities are a consequence of the repetition of migraine attacks or represent an anatomical signature that predisposes to the development of the disease is still debated," he said. "In my opinion, they might contribute to make migraine patients more susceptible to pain and to an abnormal processing of painful conditions and stimuli."

The researchers are conducting a longitudinal study of the patient group to see if their cortical abnormalities are stable or tend to worsen over the course of the disease. They are also studying the effects of treatments on the observed modifications of cortical folding and looking at pediatric patients with migraine to assess whether the abnormalities represent a biomarker of the disease.

Explore further: Aging accelerates brain abnormalities in childhood onset epilepsy patients

More information: "Cortical Abnormalities in Patients with Migraine: A Surface-based Analysis." Radiology, 2013.

Related Stories

Aging accelerates brain abnormalities in childhood onset epilepsy patients

April 2, 2012
New research confirms that childhood onset temporal lobe epilepsy has a significant impact on brain aging. Study findings published in Epilepsia, a peer-reviewed journal of the International League Against Epilepsy (ILAE), ...

Tinted specs offer real migraine relief, says fMRI study

May 26, 2011
Precision tinted lenses have been used widely to reduce visual perceptual distortions in poor readers, and are increasingly used for migraine sufferers, but until now the science behind these effects has been unclear. Now ...

Model of a migraine indicates increased neuronal excitability as a possible cause

June 23, 2011
Familial hemiplegic migraine is a rare and severe subtype of migraine with aura, an unusual sensory experience preceding the migraine attack. Researchers from the San Raffaele Scientific Institute in Milan, and CNR Institute ...

Treatment of chronic low back pain can reverse abnormal brain activity and function

May 17, 2011
It likely comes as no surprise that low back pain is the most common form of chronic pain among adults. Lesser known is the fact that those withchronic pain also experience cognitive impairments and reduced gray matter in ...

Recommended for you

Cognitive training helps regain a younger-working brain

January 23, 2018
Relentless cognitive decline as we age is worrisome, and it is widely thought to be an unavoidable negative aspect of normal aging. Researchers at the Center for BrainHealth at The University of Texas at Dallas, however, ...

Lifting the veil on 'valence,' brain study reveals roots of desire, dislike

January 23, 2018
The amygdala is a tiny hub of emotions where in 2016 a team led by MIT neuroscientist Kay Tye found specific populations of neurons that assign good or bad feelings, or "valence," to experience. Learning to associate pleasure ...

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.