Nanoparticles loaded with bee venom kill HIV

March 8, 2013 by Julia Evangelou Strait
Nanoparticles (purple) carrying melittin (green) fuse with HIV (small circles with spiked outer ring), destroying the virus’s protective envelope. Molecular bumpers (small red ovals) prevent the nanoparticles from harming the body’s normal cells, which are much larger in size. Credit: Joshua L. Hood, MD, PhD

(Medical Xpress)—Nanoparticles carrying a toxin found in bee venom can destroy human immunodeficiency virus (HIV) while leaving surrounding cells unharmed, researchers at Washington University School of Medicine in St. Louis have shown. The finding is an important step toward developing a vaginal gel that may prevent the spread of HIV, the virus that causes AIDS.

"Our hope is that in places where HIV is running rampant, people could use this gel as a to stop the initial infection," says Joshua L. Hood, MD, PhD, a research instructor in medicine.

The study appears in the current issue of .

contains a called melittin that can poke holes in the protective envelope that surrounds HIV, and other viruses. Large amounts of free melittin can cause a lot of damage. Indeed, in addition to anti-, the paper's senior author, Samuel A. Wickline, MD, the J. Russell Hornsby Professor of Biomedical Sciences, has shown melittin-loaded nanoparticles to be effective in killing .

The new study shows that melittin loaded onto these nanoparticles does not harm normal cells. That's because Hood added protective bumpers to the nanoparticle surface. When the nanoparticles come into contact with normal cells, which are much larger in size, the particles simply bounce off. HIV, on the other hand, is even smaller than the nanoparticle, so HIV fits between the bumpers and makes contact with the surface of the nanoparticle, where the bee toxin awaits.

"Melittin on the nanoparticles fuses with the viral envelope," Hood says. "The melittin forms little pore-like attack complexes and ruptures the envelope, stripping it off the virus."

According to Hood, an advantage of this approach is that the nanoparticle attacks an essential part of the virus' structure. In contrast, most anti- inhibit the virus's ability to replicate. But this anti-replication strategy does nothing to stop initial infection, and some strains of the virus have found ways around these drugs and reproduce anyway.

"We are attacking an inherent physical property of HIV," Hood says. "Theoretically, there isn't any way for the virus to adapt to that. The virus has to have a protective coat, a double-layered membrane that covers the virus."

Beyond prevention in the form of a , Hood also sees potential for using nanoparticles with melittin as therapy for existing HIV infections, especially those that are drug-resistant. The nanoparticles could be injected intravenously and, in theory, would be able to clear HIV from the blood stream.

"The basic particle that we are using in these experiments was developed many years ago as an artificial blood product," Hood says. "It didn't work very well for delivering oxygen, but it circulates safely in the body and gives us a nice platform that we can adapt to fight different kinds of infections."

Since melittin attacks double-layered membranes indiscriminately, this concept is not limited to HIV. Many viruses, including hepatitis B and C, rely on the same kind of protective envelope and would be vulnerable to melittin-loaded nanoparticles.

While this particular paper does not address contraception, Hood says the gel easily could be adapted to target sperm as well as HIV. But in some cases people may only want the HIV protection.

"We also are looking at this for couples where only one of the partners has HIV, and they want to have a baby," Hood says. "These particles by themselves are actually very safe for sperm, for the same reason they are safe for vaginal cells."

While this work was done in cells in a laboratory environment, Hood and his colleagues say the nanoparticles are easy to manufacture in large enough quantities to supply them for future clinical trials.

Explore further: Mechanism of HIV spread has potential for future drug therapy

More information: Hood, J. et al. Cytolytic nanoparticles attenuate HIV-1 infectivity. Antiviral Therapy. Vol. 19: 95 - 103. 2013

Related Stories

Mechanism of HIV spread has potential for future drug therapy

April 23, 2012
A new understanding of the initial interactions of human immunodeficiency virus type 1 (HIV-1) and dendritic cells is described by Boston University School of Medicine (BUSM) researchers in a study currently featured in the ...

Entry prohibited for AIDS viruses: Peptide triazole inhibitors disrupt cell-free HIV-1

July 8, 2011
(PhysOrg.com) -- The initial entry of HIV-1 into host cells remains a compelling yet elusive target for the development of agents to prevent infection, a critical need in the fight against the global AIDS epidemic.

Recommended for you

Paris spotlight on latest in AIDS science

July 21, 2017
Some 6,000 HIV experts gather in Paris from Sunday to report advances in AIDS science as fading hopes of finding a cure push research into new fields.

Scientists elicit broadly neutralizing antibodies to HIV in calves

July 20, 2017
Scientists supported by the National Institutes of Health have achieved a significant step forward, eliciting broadly neutralizing antibodies (bNAbs) to HIV by immunizing calves. The findings offer insights for HIV vaccine ...

Heart toxin reveals new insights into HIV-1 integration in T cell genome

July 20, 2017
Human immunodeficiency virus (HIV)-1 may have evolved to integrate its genetic material into certain immune-cell-activating genes in humans, according to new research published in PLOS Pathogens.

Scientists capture first high-resolution image of key HIV protein transitional state

July 13, 2017
A new, three-dimensional snapshot of HIV demonstrates the radical structural transformations that enable the virus to recognize and infect host cells, according to a new study led by scientists at The Scripps Research Institute ...

Barrier to autoimmune disease may open door to HIV, study suggests

July 11, 2017
Researchers from the University of Colorado School of Medicine have discovered that a process that protects the body from autoimmune disease also prevents the immune system from generating antibodies that can neutralize the ...

Team tests best delivery mode for potential HIV vaccine

June 20, 2017
For decades, HIV has successfully evaded all efforts to create an effective vaccine but researchers at The Scripps Research Institute (TSRI) and the La Jolla Institute for Allergy and Immunology (LJI) are steadily inching ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Lurker2358
1 / 5 (4) Mar 08, 2013
The finding is an important step toward developing a vaginal gel that may prevent the spread of HIV, the virus that causes AIDS.


Vaginal Gel?

Bee allergies...um...

Sex could be the most painful experience in human history.

Ooh...oooOoohh...AAAAARRRRRRRGGGH...Penis/vagina explodes, and I don't mean orgasm...

Seriously though, how can this be safe?
JoeNavy
5 / 5 (4) Mar 08, 2013
Well, you could read the rest of the article to figure out why it is safe...
nothingness
not rated yet Mar 08, 2013
"Don't worry honey, you'll bee okay if we use it"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.