Parkinsons' drug helps older people to make decisions

March 24, 2013, Wellcome Trust

A drug widely used to treat Parkinson's Disease can help to reverse age-related impairments in decision making in some older people, a study from researchers at the Wellcome Trust Centre for Neuroimaging has shown.

The study, published today in the journal Nature Neuroscience, also describes changes in the patterns of brain activity of adults in their seventies that help to explain why they are worse at making decisions than younger people.

Poorer decision-making is a natural part of the that stems from a decline in our brains' ability to learn from our experiences. Part of the decision-making process involves learning to predict the likelihood of getting a reward from the choices that we make.

An area of the brain called the is responsible for interpreting the difference between the reward that we're expecting to get from a decision and the reward that is actually received. These so called 'prediction errors', reported by a called dopamine, help us to learn from our actions and modify our behaviour to make better choices the next time.

Dr Rumana Chowdhury, who led the study at the Wellcome Trust Centre for at UCL, said: "We know that dopamine decline is part of the normal so we wanted to see whether it had any effect on reward-based decision making. We found that when we treated older people who were particularly bad at making decisions with a drug that increases dopamine in the brain, their ability to learn from rewards improved to a level comparable to somebody in their twenties and enabled them to make better decisions."

The team used a combination of behavioural testing and brain imaging techniques, to investigate the decision-making process in 32 healthy volunteers aged in their early seventies compared with 22 volunteers in their mid-twenties. Older participants were tested on and off L-DOPA, a drug that increases levels of dopamine in the brain. L-DOPA, more commonly known as , is widely used in the clinic to treat Parkinson's.

The participants were asked to complete a behavioural learning task called the two-arm bandit, which mimics the decisions that gamblers make while playing slot machines. Players were shown two images and had to choose the one that they thought would give them the biggest reward. Their performance before and after drug treatment was assessed by the amount of money they won in the task.

"The older volunteers who were less able to predict the likelihood of a reward from their decisions, and so performed worst in the task, showed a significant improvement following drug treatment," Dr Chowdhury explains.

The team then looked at in the participants as they played the game using functional Magnetic Resonance Imaging (fMRI), and measured connections between areas of the brain that are involved in reward prediction using a technique called Diffusor Tensor Imaging (DTI).

The findings reveal that the older adults who performed best in the gambling game before drug treatment had greater integrity of their dopamine pathways. Older adults who performed poorly before drug treatment were not able to adequately signal reward expectation in the – this was corrected by L-DOPA and their performance improved on the drug.

Dr John Williams, Head of Neuroscience and Mental Health at the Wellcome Trust, said: "This careful investigation into the subtle cognitive changes that take place as we age offers important insights into what may happen at both a functional and anatomical level in older people who have problems with making decisions. That the team were able to reverse these changes by manipulating dopamine levels offers the hope of therapeutic approaches that could allow older people to function more effectively in the wider community."

Explore further: The brain recruits its own decision-making circuits to simulate how other people make decisions

Related Stories

The brain recruits its own decision-making circuits to simulate how other people make decisions

December 14, 2012
A team of researchers led by Hiroyuki Nakahara and Shinsuke Suzuki of the RIKEN Brain Science Institute has identified a set of brain structures that are critical for predicting how other people make decisions.

Brain study shows why some people are more in tune with what they want

December 9, 2012
Wellcome Trust researchers have discovered how the brain assesses confidence in its decisions. The findings explain why some people have better insight into their choices than others.

Study links hippocampus with unconscious bias

October 12, 2012
(Medical Xpress)—A new US study into brain function has found links between preferences and the regions of the brain involved in connecting new memories to old ones. The associations formed provide shortcuts the subconscious ...

Recommended for you

Separate brain systems cooperate during learning, study finds

February 21, 2018
A new study by Brown University researchers shows that two different brain systems work cooperatively as people learn.

Cognitive benefits of 'young blood' linked to brain protein in mice

February 21, 2018
Loss of an enzyme that modifies gene activity to promote brain regeneration may be partly responsible for age-related cognitive decline, according to new research in laboratory mice by UC San Francisco scientists, who also ...

How the brain tells our limbs apart

February 21, 2018
Legs and arms perform very different functions. Our legs are responsible primarily for repetitive locomotion, like walking and running. Our arms and hands, by contrast, must be able to execute many highly specialized jobs—picking ...

Therapeutic antibodies protected nerve–muscle connections in a mouse model of Lou Gehrig's disease

February 20, 2018
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, causes lethal respiratory paralysis within several years of diagnosis. There are no effective treatments to slow or halt this devastating disease. Mouse ...

Brain immune system is key to recovery from motor neuron degeneration

February 20, 2018
The selective demise of motor neurons is the hallmark of Lou Gehrig's disease, also known as amyotrophic lateral sclerosis (ALS). Yet neurologists have suspected there are other types of brain cells involved in the progression ...

Brain liquefaction after stroke is toxic to surviving brain: study

February 20, 2018
Scientists have known for years that the brain liquefies after a stroke. If cut off from blood and oxygen for a long enough period, a portion of the brain will die, slowly morphing from a hard, rubbery substance into liquid ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.