Study indicates reverse impulses clear useless information, prime brain for learning

March 19, 2013
Backwards signals appear to sensitize brain cells, rat study shows
During waking hours, electrical signals travel from dendrites — antenna-like projections at one end of the cell — through the cell body. From the cell body, they then travel the length of the axon, a single long projection at the other end of the cell. This electrical signal stimulates the release of chemicals at the end of the axon, which bind to dendrites on adjacent cells, stimulating these recipient cells to fire electrical signals, and so on. When groups of cells repeatedly fire in this way, the electrical signals increase in intensity. Dr. Bukalo and her team examined electrical signals that traveled in reverse?from the cell’s axon, to the cell body, and out its many dendrites. The reverse firing, depicted in this diagram, happens during sleep and at rest, appearing to reset the cell and priming it to learn new information.

(Medical Xpress)—When the mind is at rest, the electrical signals by which brain cells communicate appear to travel in reverse, wiping out unimportant information in the process, but sensitizing the cells for future sensory learning, according to a study of rats conducted by researchers at the National Institutes of Health.

The finding has implications not only for studies seeking to help people learn more efficiently, but also for attempts to understand and treat —in which the mind has difficulty moving beyond a disturbing experience.

During waking hours, , or neurons, communicate via high-speed that travel the length of the cell. These communications are the foundation for learning. As learning progresses, these signals travel across groups of neurons with increasing rapidity, forming circuits that work together to recall a memory.

It was previously known that, during sleep, these were reversed, arising from waves of originating deep within the . In the current study, the researchers found that these reverse signals weakened circuits formed during , apparently so that unimportant information could be erased from the brain. But the reverse signals also appeared to prime the brain to relearn at least some of the forgotten information. If the animals encountered the same information upon awakening, the circuits re-formed much more rapidly than when they originally encountered the information.

"The brain doesn't store all the information it encounters, so there must be a mechanism for discarding what isn't important," said senior author R. Douglas Fields, Ph.D., head of the Section on Nervous System Development and Plasticity at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the NIH institute where the research was conducted. "These reverse appear to be the mechanism by which the brain clears itself of unimportant information."

Their findings appear in the Proceedings of the National Academy of Sciences.

The researchers studied the activity of ' brain cells from the hippocampus, a tube-like structure deep in the brain. The hippocampus relays information to and from many other regions of the brain. It plays an important role in memory, orientation, and navigation.

The classic understanding of brain cell activity is that electrical signals travel from dendrites—antenna-like projections at one end of the cell—through the cell body. From the cell body, they then travel the length of the axon, a single long projection at the other end of the cell. This electrical signal stimulates the release of chemicals at the end of the axon, which bind to dendrites on adjacent cells, stimulating these recipient cells to fire electrical signals, and so on. When groups of cells repeatedly fire in this way, the electrical signals increase in intensity.

Dr. Bukalo and her team examined electrical signals that traveled in reverse—from the cell's axon, to the cell body, and out its many dendrites. This reverse firing happens during sleep and at rest, appearing to reset the cell, the researchers found.

After first stimulating the cells with reverse electrical impulses, the researchers next stimulated the dendrites again with electrical impulses traveling in the forward direction. In response, the neurons generated a stronger signal, with the connections appearing to strengthen with repeated electrical stimulation.

This pattern appears to underlie the formation of new memories. A connection that is reset but never stimulated again may simply fade from use over time, Dr. Bukalo explained. But when a cell is stimulated again, it fires a stronger signal and may be more easily synchronized to the reinforced signals of other brain cells, all of which act in concert over time.

Explore further: Brain electrical activity spurs insulation of brain's wiring

Related Stories

Brain electrical activity spurs insulation of brain's wiring

August 11, 2011
(Medical Xpress) -- Researchers at the National Institutes of Health have discovered in mice a molecular trigger that initiates myelination, the process by which brain cell networks are reinforced with an insulating material ...

A brain filter for clear information transmission

September 6, 2012
Every activity in the brain involves the transfer of signals between neurons. Frequently, as many as one thousand signals rain down on a single neuron simultaneously. To ensure that precise signals are delivered, the brain ...

Learning requires rhythmical activity of neurons

September 26, 2012
The hippocampus represents an important brain structure for learning. Scientists at the Max Planck Institute of Psychiatry in Munich discovered how it filters electrical neuronal signals through an input and output control, ...

The architects of the brain: Scientists decipher the role of calcium signals

October 26, 2011
German neurobiologists have found that certain receptors for the neurotransmitter glutamate determine the architecture of nerve cells in the developing brain. Individual receptor variants lead to especially long and branched ...

Rhythms in the brain help give a sense of location, study shows

January 10, 2013
Research at the University of Edinburgh tracked electrical signals in the part of the brain linked to spatial awareness.

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

MandoZink
4.4 / 5 (7) Mar 19, 2013
"The brain doesn't store all the information it encounters, so there must be a mechanism for discarding what isn't important,"

Discovering how that is determined could be the most significant part of this brain function. The implications of downplaying information so it doesn't set in could explain a lot of behavior, including costly ones for the resulting less-informed individual.
MandoZink
4.4 / 5 (7) Mar 19, 2013
I guess I was also thinking of comments on this site by individuals who often seem to have selectively discarded information.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.