Scientists examine proton radiography of brain mockup

March 26, 2013
Proton radiograph of a high-fidelity mockup of a human head.

Los Alamos researchers and German collaborators have investigated the application of giga-electron volt (GeV, or billion electron volts) energy proton beams for medical imaging in combination with proton radiation treatment for cancer.

The use of such a high-energy is ideal for imaging small tumors within patients for targeted proton therapy. Proton radiography, which was invented at Los Alamos, employs a high-energy proton beam to image the properties and behavior of materials.

Significance of the research

Proton beams for use the dramatic increase in as the proton stops in tissue to kill the tumors. The incident proton beam must have relatively low energy (approximately 200 MeV) to stop within the human body. However, the low energy proton beam is susceptible to multiple scattering that spreads the beam at the end of its range, just as the protons reach the tumor. This effect restricts the utility of proton therapy to relatively large tumors. The German researchers have discovered that increasing the energy of the proton beam to a GeV reduces the scattering. The GeV proton beam, called a "proton knife," enables to be applied to smaller tumors with greater accuracy. Irradiating the tumor from multiple angles allows uniform distribution of protons throughout its volume.

Locating the position of small tumors very accurately is difficult. Presently, X-ray CAT (computed axial tomography) scan results are collected weeks or months before treatment sessions. The "map" of the internal structure from the is used to guide the proton beam to the tumor location within the body. This can be problematic as the tumor position can change within the body between the CAT scan and the treatment. Treating smaller tumors requires locating them precisely during the treatment session. A 1 GeV proton beam, which is used for the treatment, could image the within the patient.

Research achievements

The Los Alamos researchers and collaborators investigated GeV proton radiography at LANSCE using biological samples and a high-fidelity human head mockup, called a Matroshka. This mockup was designed and built for dose measurements of humans in the International Space Station. The Matroshka's density and internal structure accurately matches a human head. The team radiographed the mockup with protons to determine the ability of GeV radiography to locate internal features. The scientists observed sub-mm resolution of features and contrast for structures located in soft tissue.

Explore further: Proton imaging provides more accuracy, less radiation to pediatric cancer patients

Related Stories

Proton imaging provides more accuracy, less radiation to pediatric cancer patients

April 29, 2011
Proton radiography imaging used prior to and during proton treatments for pediatric cancer patients provides for more accurate treatment delivery and a lower dose of radiation compared to standard diagnostic X-rays and cone ...

Investment in proton beam therapy for cancer may be premature

April 18, 2012
Both the US and UK are pouring money into building proton accelerators to treat cancer. They have been described as the world's "most costly medical devices" but in an article published in the British Medical Journal today, ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.