Tiny RNA molecule may have role in polycystic ovary syndrome, insulin resistance

March 19, 2013
Tiny RNA molecule may have role in polycystic ovary syndrome, insulin resistance
A group of tiny RNA molecules with a big role in regulating gene expression also appear to have a role in causing insulin resistance in woman with polycystic ovary syndrome and, perhaps, in all women, according to research by scientists at Georgia Regents University. Credit: Phil Jones

A group of tiny RNA molecules with a big role in regulating gene expression also appear to have a role in causing insulin resistance in woman with polycystic ovary syndrome and, perhaps, in all women, researchers report.

Research in the journal Diabetes, indicates that high activity levels of a called miR-93 in fat cells impedes insulin's use of glucose, contributing to PCOS as well as , said Dr. Ricardo Azziz, reproductive endocrinologist and PCOS expert at the Medical College of Georgia at Georgia Regents University.

"This is one of the first reports of a defect that may occur both in women who are insulin resistant and, in particular, in women with PCOS," said Azziz, the study's corresponding author. "Identifying this helps us understand these common conditions better and points us toward targeted therapies to correct these problems in women."

PCOS affects about 10 percent of women and is characterized by excess , irregular ovulation and menstruation and is associated with an increased risk for insulin resistance, which can lead to diabetes and heart disease.

Researchers looked at fat cells from the lower abdomen of 21 women with PCOS and 20 controls. In all the women with PCOS, they found over expression of miR-93 and decreased expression of GLUT4, a key protein that regulates fat's use of glucose for energy. Fat, a large organ in even a thin individual, is where a lot of glucose usage via insulin occurs.

GLUT4 expression was lowest in the women with PCOS who also were insulin resistant. They also found the expression was low in members of the control group who were insulin resistant.

"Low levels of GLUT4 in fat appear to be affecting insulin resistance in general and to have a more dramatic impact in PCOS," Azziz said. MiR-93 was known to impact GLUT4 in other cell types and to have a role in reproduction, infertility and . "There has been no clear mechanism to describe insulin resistance in PCOS and we believe this is one of the pathways," said Dr. Yen-Hao Chen, cell biologist at MCG and the study's first author.

Interestingly, the investigators found that two other microRNAS - miR-133 and miR-223, which are known to regulate GLUT4 expression in heart muscle cells - also were over expressed but only in the of PCOS patients, Chen said. This exclusivity implicates the tiny molecules in the underlying condition of PCOS, Chen said. The researchers don't know yet if the two are related to miR-93. "We are just beginning to understand the role of these small molecules in PCOS and insulin resistance and much work remains to be done," Azziz said.

Follow up studies include better understanding just how microRNAs impact GLUT4, identifying other microRNAS that do – including looking further at miR-133 and 223 – and identifying what factors impact the tiny .

Humans use both insulin and non-insulin related mechanisms to use blood sugar, or glucose, as an energy source.

Azziz and his colleagues recently showed in Journal of Clinical Endocrinology & Metabolism that women with PCOS have defects in both mechanisms. In fact, PCOS who had the most difficulty controlling glucose via insulin were also the ones with the greatest declines in their ability to use non-insulin approaches. More typically, when insulin resistance increases, the body's non-insulin dependent usage increases, apparently to help compensate.

Explore further: Polycystic ovary syndrome puts glucose control in double jeopardy

Related Stories

Polycystic ovary syndrome puts glucose control in double jeopardy

March 13, 2013
Polycystic ovary syndrome, a condition affecting about 10 percent of women and characterized by excess male hormone and increased risk of diabetes and heart disease, appears to cause a sort of double jeopardy for those struggling ...

Recommended for you

Alzheimer's drug cuts hallmark inflammation related to metabolic syndrome by 25 percent

July 20, 2017
An existing Alzheimer's medication slashes inflammation and insulin resistance in patients with metabolic syndrome, a potential therapeutic intervention for a highly dangerous condition affecting 30 percent of adults in the ...

Diabetes or its precursor affects 100 million Americans

July 19, 2017
Almost one-third of the US population—100 million people—either has diabetes or its precursor condition, known as pre-diabetes, said a government report Tuesday.

One virus may protect against type 1 diabetes, others may increase risk

July 11, 2017
Doctors can't predict who will develop type 1 diabetes, a chronic autoimmune disease in which the immune system destroys the cells needed to control blood-sugar levels, requiring daily insulin injections and continual monitoring.

Diabetes complications are a risk factor for repeat hospitalizations, study shows

July 7, 2017
For patients with diabetes, one reason for hospitalization and unplanned hospital readmission is severe dysglycemia (uncontrolled hyperglycemia - high blood sugar, or hypoglycemia - low blood sugar), says new research published ...

Researchers identify promising target to protect bone in patients with diabetes

July 7, 2017
Utilizing metabolomics research techniques, NYU Dentistry researchers investigated the underlying biochemical activity and signaling within the bone marrow of hyperglycemic mice with hopes of reducing fracture risks of diabetics

Immune system killer cells increase risk of diabetes

July 6, 2017
More than half of the German population is obese. One effect of obesity is to chronically activate the immune system, placing it under continuous stress. Researchers in Jens Brüning's team at the Max-Planck-Institute for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.