Shutting down DNA construction: How senescence halts growth of potential cancers

April 4, 2013
These pictures represent one experiment to determine whether cells have undergone senescence in the lab. After cells are exposed to a cancer-causing mutation and do not have enough DNA building blocks, they become larger and flatter and stain bright blue. This experiment can also be performed in cancer cells and in human tissues to observe senescence within the human body. Credit: Katherine Aird/The Wistar Institute

Researchers from The Wistar Institute explain a new molecular mechanism behind the phenomenon of oncogene-induced senescence. By depriving the cell of the ability to make new nucleotides—the building blocks of DNA molecules—cells can suppress cancer development by forcing a damaged cell into a senescent state, where the cell remains alive yet cannot reproduce.

According to the researchers, their findings may offer a new strategy to strengthen the effects of anti- and chemotherapies.

Their results, which appear in the April 25 issue of Cell Reports (available online now), show how a senescent cell may become cancerous if supplied with a new source of nucleotides. Their experiments were performed using nevi—the technical term for moles—and , but the underlying mechanism may apply to all .

"Oncogene-induced senescence is an automatic mechanism that arrests the growth of normal cells when an oncogene or cancer-causing gene is activated to prevent the progression of these cells into cancer," said Rugang Zhang, Ph.D., associate professor in The Wistar Institute Cancer Center's and Regulation program. "We identified how an oncogene can set senescence into motion by suppressing RRM2, an enzyme necessary for producing nucleotides."

The video will load shortly
Wistar's Katherine Aird discusses the Zhang Lab's findings on the mechanics of oncogene-induced senescence. In the April 25, 2013 issue of the journal Cell Reports, they demonstrate how DNA damage can cause a cell to become senescent, a state where growth is halted. (A mole on your skin is an example of a senescent cell you see every day.) They show how this happens as cells suppress the ability to generate nucleotides (the building blocks of DNA). When you supply the cell with new sources of nucleotides, the cell will go into a frenzy of multiplication -- a hallmark of cancer. Credit: The Wistar Institute

Without the of DNA, Zhang says, the cell cannot multiply. When new sources of nucleotides are introduced, however, the cell goes into overdrive, becoming cancerous.

Zhang offers an analogy comparing senescence to a , where workers continue to build as long as they have a steady supply of bricks. When an oncogene is activated, it is like hiring an excess of workers. A normal cell's typical is to cancel orders for new bricks. When all the excess workers quickly run through their supply of bricks, the construction site shuts down. This is essentially senescence. If you suddenly flood the site with new building materials, the workers go into overdrive, building wildly without supervision. In the case of cancer, this causes the cells to put DNA building into overdrive—starting the endless cycles of cell growth and division that are the hallmark of cancer.

To explore how oncogene-induced senescence works, Zhang and his colleagues compared human moles (essentially, pre-cancerous lesions in a senescent state) to cancerous melanoma cells. They found that stable, senescent cells experienced a dramatic decrease in the available number of nucleotides. This was linked to the suppression of RRM2, a gene whose protein is important for making nucleotides. Further, they linked this RRM2 suppression to mutations in BRAF or NRAS, proteins that control the cycle of growth and replication within cells that have been labeled "oncogenes" because their mutation is linked to melanoma and other cancers. Indeed, they report that melanoma patients with high levels of RRM2 fare worse, overall.

Since cells that lacked nucleotides became senescent, the researchers wondered what would happen if they resupplied the cell with nucleotides—in essence, providing eager workers more bricks. They found that, even in cells with an inactive RRM2 gene, the cell rapidly resumed growing and dividing. Such an event in moles, for example, could be what causes melanoma.

"Moles are probably the most visible example of the effect of -induced senescence in human cells," said Katherine M. Aird, Ph.D., lead author of the study and postdoctoral fellow in the Zhang laboratory at Wistar. "The cells within a mole may have arrested growth, but they are still alive, and may regain activity, even turning cancerous. That is why your dermatologist might tell you to keep an eye on a seemingly benign mole, as changes in its size, color or shape could indicate that it is no longer benign."

According to Aird, if you could stabilize senescence, perhaps by targeting RRM2, it could put the brakes on even drug-resistant cells.

"This mechanism also suggests a strategy for patient therapy," Aird explained. "If we can decrease RRM2 activity, it could force tumor cells into a stronger senescent state, perhaps improving the effectiveness of chemotherapy or targeted drugs."

Explore further: Cell senescence does not stop tumor growth

Related Stories

Cell senescence does not stop tumor growth

January 19, 2012
Since cancer cells grow indefinitely, it is commonly believed that senescence could act as a barrier against tumor growth and potentially be used as a way to treat cancer. A collaboration between a cancer biologist from the ...

Slow growth of childhood brain tumors explained

June 23, 2011
(Medical Xpress) -- Johns Hopkins researchers have found a likely explanation for the slow growth of the most common childhood brain tumor, pilocytic astrocytoma. Using tests on a new cell-based model of the tumor, they ...

Genetics of melanoma chemoresistance

June 6, 2011
Malignant melanoma is a highly aggressive and notoriously chemoresistant form of cancer. In a new paper, Ohanna et al. reveal that anti-melanoma drugs may, paradoxically, induce a senescence-associated secretory profile ("secretome") ...

Previously unknown mechanism identified in oncogene-induced senescence

December 12, 2012
Cell aging, or cellular senescence, has an important role in the natural physiological response to tumor development. Activated oncogenes are able to induce senescence, and recent findings have suggested that oncogene-induced ...

Recommended for you

Stem cell therapy attacks cancer by targeting unique tissue stiffness

July 26, 2017
A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.