Whole genome sequencing finds new mutations to blame for a majority of brain tumor subtype

April 14, 2013, St. Jude Children's Research Hospital

Washington University Pediatric Cancer Genome Project has identified mutations responsible for more than half of a subtype of childhood brain tumor that takes a high toll on patients. Researchers also found evidence the tumors are susceptible to drugs already in development.

The study focused on a family of known as low-grade gliomas (LGGs). These slow-growing cancers are found in about 700 children annually in the U.S., making them the most common childhood tumors of the brain and spinal cord. For patients whose tumors cannot be surgically removed, the long-term outlook remains bleak due to complications from the disease and its ongoing treatment. Nationwide, surgery alone cures only about one-third of patients.

Using , researchers identified genetic alterations in two genes that occurred almost exclusively in a subtype of LGG termed diffuse LGG. This subtype cannot be cured surgically because the invade the healthy brain. Together, the mutations accounted for 53 percent of the diffuse LGG in this study. Researchers also demonstrated that one of the mutations, which had not previously been linked to brain tumors, caused tumors when introduced into the glial of mice.

The findings appear in the April 14 advance online edition of the scientific journal Nature Genetics.

"This subtype of low-grade glioma can be a nasty chronic disease, yet prior to this study we knew almost nothing about its genetic alterations," said David Ellison, M.D., Ph.D., chair of the St. Jude Department of Pathology and the study's corresponding author. The first author is Jinghui Zhang, Ph.D., an associate member of the St. Jude Department of .

The Pediatric is using next-generation whole to determine the complete normal and cancer genomes of children and adolescents with some of the least understood and most difficult to treat cancers. Scientists believe that studying differences in the 3 billion chemical bases that make up the human genome will provide the scientific foundation for the next generation of cancer care.

"We were surprised to find that many of these tumors could be traced to a single genetic alteration," said co-author Richard K. Wilson, Ph.D., director of The Genome Institute at Washington University School of Medicine in St. Louis. "This is a major pathway through which low-grade gliomas develop and it provides new clues to explore as we search for better treatments."

The study involved whole genome sequencing of 39 paired tumor and normal tissue samples from 38 children and adolescents with different subtypes of LGG and related tumors called low-grade glioneuronal tumors (LGGNTs). Although many cancers develop following multiple genetic abnormalities, 62 percent of the 39 tumors in this study stemmed from a single genetic alteration.

Previous studies have linked LGGs to abnormal activation of the MAPK/ERK pathway. The pathway is involved in regulating cell division and other processes that are often disrupted in cancer. Until now, however, the involved in driving this pathway were unknown for some types of LGG and LGGNT.

This study linked activation in the pathway to duplication of a key segment of the FGFR1 gene, which investigators discovered in brain tumors for the first time. The segment is called a tyrosine kinase domain. It functions like an on-off switch for several cell signaling pathways, including the MAPK/ERK pathway. Investigators also demonstrated that experimental drugs designed to block activity along two altered pathways worked in cells with the FGFR1 tyrosine kinase domain duplication. "The finding suggests a potential opportunity for using targeted therapies in patients whose tumors cannot be surgically removed," Ellison said.

Researchers also showed that the FGFR1 abnormality triggered an aggressive brain tumor in glial cells from mice that lacked the suppressor gene Trp53.

Whole-genome sequencing found previously undiscovered rearrangements in the MYB and MYBL1 genes in diffuse LGGs. These newly identified abnormalities were also implicated in switching on the MAPK/ERK pathway.

Researchers checked an additional 100 LGGs and LGGNTs for the same FGFR1, MYB and MYBL1 mutations. Overall, MYB was altered in 25 percent of the diffuse LGGs, and 24 percent had alterations in FGFR1. Researchers also turned up numerous other mutations that occurred in just a few tumors. The affected genes included BRAF, RAF1, H3F3A, ATRX, EP300, WHSC1 and CHD2.

"The Project has provided a remarkable opportunity to look at the genomic landscape of this disease and really put the alterations responsible on the map. We can now account for the genetic errors responsible for more than 90 percent of low-grade gliomas," Ellison said. "The discovery that FGFR1 and MYB play a central role in childhood diffuse LGG also serves to distinguish the pediatric and adult forms of the disease."

Explore further: Key regulatory genes often amplified in aggressive childhood tumor of the brainstem

More information: Whole genome sequencing identifies genetic alterations in pediatric low-grade gliomas, DOI: 10.1038/ng.2611

Related Stories

Key regulatory genes often amplified in aggressive childhood tumor of the brainstem

September 19, 2011
The largest study ever of a rare childhood brain tumor found more than half the tumors carried extra copies of specific genes linked to cancer growth, according to research led by St. Jude Children's Research Hospital investigators.

Gene sequencing project identifies potential drug targets in common childhood brain tumor

June 20, 2012
Researchers studying the genetic roots of the most common malignant childhood brain tumor have discovered missteps in three of the four subtypes of the cancer that involve genes already targeted for drug development.

Study finds mutations tied to aggressive childhood brain tumors

January 29, 2012
Researchers studying a rare, lethal childhood tumor of the brainstem discovered that nearly 80 percent of the tumors have mutations in genes not previously tied to cancer. Early evidence suggests the alterations play a unique ...

Gene identified as a new target for treatment of aggressive childhood eye tumor

January 11, 2012
New findings from the St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project (PCGP) have helped identify the mechanism that makes the childhood eye tumor retinoblastoma so aggressive. ...

Gene sequencing project mines data once considered 'junk' for clues about cancer

January 24, 2013
Genome sequencing data once regarded as junk is now being used to gain important clues to help understand disease. The latest example comes from the St. Jude Children's Research Hospital – Washington University Pediatric ...

Recommended for you

15 new genes identified that shape human faces

February 20, 2018
Researchers from KU Leuven (Belgium) and the universities of Pittsburgh, Stanford, and Penn State have identified 15 genes that determine facial features. The findings were published in Nature Genetics.

New algorithm can pinpoint mutations favored by natural selection in large sections of the human genome

February 20, 2018
A team of scientists has developed an algorithm that can accurately pinpoint, in large regions of the human genome, mutations favored by natural selection. The finding provides deeper insight into how evolution works, and ...

New software helps detect adaptive genetic mutations

February 20, 2018
Researchers from Brown University have developed a new method for sifting through genomic data in search of genetic variants that have helped populations adapt to their environments. The technique, dubbed SWIF(r), could be ...

Highly mutated protein in skin cancer plays central role in skin cell renewal

February 20, 2018
Approximately once a month, our skin completely renews itself. If this highly coordinated process goes awry, it can lead to a variety of skin diseases, ranging from skin cancer to psoriasis. Cells lining such organs as skin ...

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.