Study identifies key shift in the brain that creates drive to overeat

April 29, 2013, Indiana University

A team of American and Italian neuroscientists has identified a cellular change in the brain that accompanies obesity. The findings could explain the body's tendency to maintain undesirable weight levels, rather than an ideal weight, and identify possible targets for pharmacological efforts to address obesity.

The findings, published in the Proceedings of the National Academy of Sciences Early Edition this week, identify a switch that occurs in neurons within the hypothalamus. The switch involves receptors that trigger or inhibit the release of the orexin A peptide, which stimulates the appetite, among other behaviors. In normal-weight mice, activation of this receptor decreases orexin A release. In , activation of this receptor stimulates orexin A release.

"The striking finding is that you have a massive shift of receptors from one set of impinging on these neurons to another set," said Ken Mackie, professor in the Department of Psychological and in the College of Arts and Sciences at IU Bloomington. "Before, activating this receptor inhibited the secretion of orexin; now it promotes it. This identifies potential targets where an intervention could influence obesity."

The work is part of a longstanding collaboration between Mackie's team at the Gill Center for Biomolecular Science at IU Bloomington and Vincenzo Di Marzo's team at the Institute of Biomolecular Chemistry in Pozzuoli, Italy. Both teams study the , which is composed of receptors and signaling chemicals that occur naturally in the brain and have similarities to the active ingredients in cannabis, or marijuana. This neurochemical system is involved in a variety of , including appetite, pain, mood, stress responses and memory.

is controlled in part by the hypothalamus, a portion of the brain that regulates many essential behaviors. Like other important body systems, food consumption is regulated by multiple neurochemical systems, including the endocannabinoid system, representing what Mackie describes as a "balance of a very fine web of regulatory networks."

An emerging idea, Mackie said, is that this network is reset during obesity so that food consumption matches maintenance of current weight, not a person's ideal weight. Thus, an obese individual who loses weight finds it difficult to keep the weight off, as the brain signals the body to eat more in an attempt to return to the heavier weight.

Using mice, this study found that in obesity, CB1 cannabinoid receptors become enriched on the nerve terminals that normally inhibit orexin neuron activity, and the orexin neurons produce more of the endocannabinoids to activate these receptors. Activating these CB1 receptors decreases inhibition of the orexin neurons, increasing orexin A release and food consumption.

"This study identifies a mechanism for the body's ongoing tendency to return to the heavier weight," Mackie said.

The researchers conducted several experiments with mice to understand how this change takes place. They uncovered a role of leptin, a key hormone made by fat cells that influences metabolism, hunger and food consumption. Obesity causes leptin levels to be chronically high, making brain cells less sensitive to its actions, which contributes to the molecular switch that leads to the overproduction of .

Explore further: 3 p.m. slump? Why a sugar rush may not be the answer

More information: Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons, PNAS, 2013. www.pnas.org/cgi/doi/10.1073/pnas.1219485110

Related Stories

3 p.m. slump? Why a sugar rush may not be the answer

November 16, 2011
(Medical Xpress) -- A new study has found that protein and not sugar activates the cells responsible for keeping us awake and burning calories. The research, published in the 17 November issue of the scientific journal Neuron, ...

Orexin: A hormone that fights fat with fat

October 4, 2011
The fat we typically think of as body fat is called white fat. But there's another type—known as brown fat—that does more than just store fat. It burns fat. Scientists used to think that brown fat disappeared after ...

Inducing non-REM sleep in mice by novel optogenetical control technique

July 20, 2011
Recently, optogenetics, which controls the activity of neuron using the light-activated protein, has been getting a lot of attention. This light-activated protein works like a switch of neurons by sensing specific color of ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.