Researchers discover link between inherited endocrine tumor syndrome and well-studied cell pathway

April 24, 2013
Inhibition of Hedgehog signaling in a MEN1 mouse model results in decreased islet cell proliferation. Immunofluorescence for BrdUrd and insulin in pancreas of Men1-excised mice fed with either vehicle control (left) or Erivedge/GDC-0449 (right) for 4 weeks at a dose of 100 mg/kg twice daily. Credit: Xianxin Hua, MD, PhD, Buddha Gurung, PhD, Perelman School of Medicine, University of Pennsylvania

(Medical Xpress)—A mutation in a protein called menin causes a hereditary cancer syndrome called MEN1 (multiple endocrine neoplasia type 1). Individuals with MEN1 are at a substantially increased risk of developing neuroendocrine tumors, including cancer of the pancreatic islet cells that secrete insulin.

Yet knowing these connections and doing something to improve fighting the syndrome are two different things. Researchers still did not exactly understand how menin mutations lead to MEN1 syndrome, and more importantly, what might be dysregulated by menin mutations and thus can be targeted to improve therapy against this type of cancer. Now, researchers at the Perelman School of Medicine at the University of Pennsylvania have found that pathway, which may lead to a new treatment for patients with MEN1 and sporadic endocrine tumors.

A research team led by Xianxin Hua, MD, PhD, associate professor of at the Abramson Family Cancer Research Institute, report in Cancer Research that menin suppresses signaling in the much-studied Hedgehog pathway in endocrine organs. Menin mutations lead to increased Hedgehog signaling and . They found that inhibiting proteins in the Hedgehog network using drugs reduces growth of tumors in an animal model of human MEN1 syndrome.

Unlike many cancer-associated proteins, menin is neither an enzyme nor a signaling receptor. Instead, the team discovered that menin works by physically interacting with a second protein, PRMT5. The menin-PRMT5 complex binds to the promoter of the Gas1 gene, where PRMT5 (an enzyme that adds to histone proteins) functions as an epigenetic inhibitor, tamping down . The GAS1 protein promotes Hedgehog signaling, and thus by inhibiting Gas1 expression, menin and PRMT5 effectively dial down the pathway's tendency towards cell proliferation.

"This study uncovered a new layer of regulation of pro-proliferative genes by menin via the Hedgehog signaling pathway," Hua says. "These pro-replication genes are regulated through GAS1 and PRMT5."

Discovering the link between menin and Hedgehog was serendipitous, says Hua. Using microarray analysis, his team found that loss of menin results in increased expression of the Gas1 gene. Separately, other groups reported that GAS1 mediates Hedgehog signaling. That knowledge gave Hua's team the missing piece of information required to identify menin's normal cellular function. "We found menin linked to Hedgehog signaling by suppressing expression of GAS1, leading to the suppression of Hedgehog signaling in endocrine tissue."

Significantly, Hua's team found that menin mutant proteins associated with MEN1 cancer in patients were impaired in their ability to interact with PRMT5, and thus, in adding the methyl chemical group to the Gas1 promoter gene. What's more, treating a mouse model of human MEN1 syndrome with a Hedgehog pathway inhibitor called Erivedge (FDA-approved in 2012 for metastatic or locally advanced basal cell carcinoma) reduced proliferation of tumor cells and blood insulin levels. That, says Hua, suggests a potential new treatment for patients with MEN1 syndrome, and also likely for sporadic endocrine tumors, some 40 percent of which also contain menin mutations

"Because we show in this mouse tumor model that we can significantly suppress proliferation of tumor cells in pancreatic islets and that we can reduce the higher insulin levels with a drug, which was just clinically approved to be safe, that naturally raises the question of whether, in patients who have mutation in this gene or enhanced Hedgehog signaling, this drug can improve patient symptoms to reduce tumor progression or insulinemia," Hua asks.

First author and postdoctoral fellow in the Hua lab Buddha Gurung, PhD, adds "the possibilities of translating these findings into a viable therapeutic option is extremely exciting."

Explore further: NDSU assistant professor publishes paper on pancreatic tumor regulator

Related Stories

NDSU assistant professor publishes paper on pancreatic tumor regulator

February 17, 2012
Erxi Wu, assistant professor of pharmaceutical sciences, co-wrote the review article, “The paracrine Sonic Hedgehog signaling derived from tumor epithelial cells: A key regulator in the pancreatic tumor microenvironment,” ...

Inhibiting Hedgehog signaling pathway may improve pancreatic cancer treatment

June 19, 2012
Combining a new targeted therapy with standard chemotherapy may help defeat pancreatic cancer, according to results presented at the American Association for Cancer Research's Pancreatic Cancer: Progress and Challenges conference, ...

A scientific breakthrough could help understand certain cancers

June 13, 2011
A scientific breakthrough by researchers at the Institut de recherches cliniques de Montréal (IRCM) will be published tomorrow in Developmental Cell, a scientific journal of the Cell Press group. Led by Dr. Frédéric ...

Chemo may get boost from cholesterol-related drug

April 3, 2012
Johns Hopkins investigators are testing a way to use drugs that target a cholesterol pathway to enhance the cancer-killing potential of standard chemotherapy drugs. Their tests, in mouse models of pancreatic cancer, may yield ...

Hedgehog pathway key in tamoxifen-resistant breast CA

November 6, 2012
(HealthDay)—Noncanonical Hedgehog (Hh) signaling is activated in tamoxifen-resistant tumors, and the phosphoinositide 3-kinase inhibitor/protein kinase B (PI3K/AKT) pathway plays a key role protecting Hh signaling molecules, ...

Scientists link two cancer-promoting pathways in esophageal cancer

March 19, 2012
Identification of a non-traditional pathway for spiriting a cancer-promoting protein into the cell nucleus points to a possible combination therapy for esophageal cancer and indicates a mechanism of resistance for new drugs ...

Recommended for you

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

Popular immunotherapy target turns out to have a surprising buddy

August 16, 2017
The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. ...

A metabolic treatment for pancreatic cancer?

August 15, 2017
Pancreatic cancer is now the third leading cause of cancer mortality. Its incidence is increasing in parallel with the population increase in obesity, and its five-year survival rate still hovers at just 8 to 9 percent. Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.