Structure that edits messenger RNA transcripts defective in two different forms of motor neuron diseases

April 26, 2013
(Upper) TDP-43 (green) and SMN (red) proteins localize in nuclear gems in cultured cells (arrows). (Lower) Spliceosome subunits accumulate abnormally in the nuclei of motor neurons from an ALS patient (right), but not in normal motor neurons (left). Credit: 2013 K. Yamanaka et al.

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are degenerative motor neuron diseases in which the key mutated genes are involved in RNA metabolism. This similarity suggests that a common dysregulation of some aspect of RNA metabolism in motor neurons may underlie both disorders, although the exact cellular effects of the neurodegenerative mutations are unknown. Koji Yamanaka, Hitomi Tsuiji and colleagues from the RIKEN Brain Science Institute and other institutions in Japan have now obtained evidence that a cellular structure that edits messenger RNA (mRNA) transcripts is defective in both of these motor neuron diseases.

ALS is associated with mutations in the SOD1, TDP-43 and FUS/TLS protein-encoding genes, and (SMA) with mutations in a gene called SMN1. Identifying that the TDP-43, FUS/TLS and SMN proteins are all localized to structures known as 'gems' inside the nucleus, the researchers investigated whether these proteins might perform a similar function, which may indicate that the associated diseases share common RNA processing defects.

Yamanaka and his colleagues performed a series of biochemical experiments using lab-grown neurons and cancer cells, as well as neurons isolated from genetically engineered mice lacking the FUS gene. They found that eliminating TDP-43 expression in cultured cells prevented the formation of nuclear gems, and that gems were absent from neurons isolated from the mutant mice. Gem formation requires an interaction between TDP-43, SMN and FUS proteins, and this interaction is mediated by one end of the TDP-43 protein.

The researchers also found that all three proteins are involved in maintenance of the spliceosome, a large multi-component structure found in the nucleus. The spliceosome consists of multiple protein and RNA subunits, and controls splicing—the process by which non-coding sequences are removed from mRNA transcripts before they are translated into the strings of amino acids that make up proteins.

In ALS patients, the team found that ALS had spliceosome defects—gems were missing from the nucleus and the RNA subunits of the spliceosome accumulated abnormally. Motor neurons from SMA patients, on the other hand, had significantly reduced levels of spliceosome RNA subunits in the nucleus.

The findings suggest that loss of spliceosome integrity plays an important role in neurodegeneration in both diseases. "Defective spliceosomes cause abnormal protein expression patterns, which can lead to motor neuron death," says Yamanaka. "This could be a new therapeutic target for neurodegenerative diseases, and we are now initiating efforts to develop a new class of drugs."

Explore further: Increased stability of a misfolded protein linked to age of onset of common form of motor neuron disease

More information: Tsuiji, H. et al. Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Molecular Medicine 5, 221–234 (2013). dx.doi.org/10.1002/emmm.201202303

Related Stories

Increased stability of a misfolded protein linked to age of onset of common form of motor neuron disease

April 22, 2013
Neurodegenerative diseases are characterized by the aggregation of misfolded proteins, which accumulate to form insoluble clumps within or around nerve cells. In the adult motor neuron disease amyotrophic lateral sclerosis ...

Common RNA pathway found in ALS and dementia

September 30, 2012
Two proteins previously found to contribute to ALS, also known as Lou Gehrig's disease, have divergent roles. But a new study, led by researchers at the Department of Cellular and Molecular Medicine at the University of California, ...

Shared pathway links Lou Gehrig's disease with spinal muscular atrophy

September 27, 2012
Researchers of motor neuron diseases have long had a hunch that two fatal diseases, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), might somehow be linked. A new study confirms that this link exists.

Disease progression halted in rat model of Lou Gehrig's disease

December 12, 2011
Amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease) is an incurable adult neurodegenerative disorder that progresses to paralysis and death. Genetic mutations are the cause of disease in 5% of patients ...

New discovery may block ALS disease process

April 19, 2011
New Orleans, LA –In the first animal model of Amyotrophic Lateral Sclerosis (ALS), developed by Dr. Udai Pandey, Assistant Professor of Genetics at LSU Health Sciences Center New Orleans, Dr. Pandey's lab has found in ...

A drug-screening platform for ALS

August 2, 2012
A research group at the Center for iPS Cell Research and Application (CiRA) at Japan's Kyoto University has successfully recapitulated amyotrophic lateral sclerosis (ALS)-associated abnormalities in motor neurons differentiated ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.