The metabolic weathervane of cancer

April 1, 2013

Highly expressed in various cancers and known for its cytoprotective properties, TRAP1 protein has been identified as a potential target for antitumor treatments. As a result of the research conducted by Len Neckers, from the National Cancer Institute in Bethesda, and Didier Picard, from the University of Geneva (UNIGE), Switzerland, this outlook is now being called into question.

The researchers' findings, published in PNAS, describe how TRAP1 disrupts the metabolism of malignant cells, and shows that the quantity of this protein decreases as they progress to a more aggressive stage. The suppression of TRAP1 leads to the transfer from one to another (more powerful) one, as well as a significant increase in the motility and invasiveness of cells. In some situations, a therapy designed to inhibit TRAP1 could actually stimulate to a metastatic state.

The cells of our body consume various nutrients from which they draw energy for their daily needs, with the help of inhaled oxygen. Glucose, for example, has a maximal energetic yield after complete combustion in mitochondria—genuine intracellular power plants. Even without oxygen, this nutrient may still provide some energy after being partially digested in the cell's cytoplasm. "This is the process—similar to fermentation—that is frequently used by , allowing them to proliferate rapidly and free themselves, for the most part, of oxygen. They offset low energy output by consuming more glucose", notes Didier Picard, professor at the Department of of the Faculty of Science at UNIGE.

A shield for malignant cells

Some types of tumors are characterized by an excessive expression of TRAP1, a molecule present in mitochondria. This protein, which belongs to the "" family, plays a role in protecting against cell auto-destruction and the damage done to its DNA in response to and other types of stress. "The antioxidant and cytoprotective properties of TRAP1, whose use as a shield, have designated this protein as a target for antitumor treatments. Furthermore, TRAP1 inhibitors have demonstrated anticancerous activity in preclinical trials," explains Guillaume Mühlebach, first co-author of the article.

Alternate methods of energy production…

Tumor development occurs in several stages, with distinct metabolic needs. In collaboration with teams in the United States and Japan, researchers in Geneva have demonstrated that the expression of TRAP1 is inversely correlated with tumor stage in various types of human cancers. "In particular, we found that TRAP1 regulates a metabolic 'switch' at the level of glucose digestion. When this protein is overexpressed, as is often the case in primary tumors, the cells use fermentation to generate the resources for growth," explains Didier Picard.

…according to current needs

On the other hand, in a more advanced tumor stage, the expression of TRAP1 decreases and the cells mainly proceed to a complete combustion of nutrients in mitochondria. This metabolic pathway, with high and high oxygen consumption, could provide them the energy necessary to form metastases. "The lack of TRAP1 indeed translates into a dramatic increase in cell motility and invasive power," says Evangelia Vartholomaiou, another member of the Geneva group.

The anticancerous strategies targeting this protein could therefore have adverse effects on tumors capable of promoting one metabolic pathway over another according to their needs. While simultaneously inhibiting cell proliferation, this type of treatment could actually stimulate progression into a metastatic state.

Explore further: The cells' petrol pump is finally identified

Related Stories

The cells' petrol pump is finally identified

May 24, 2012
The oxygen and food we consume are converted into energy by tiny organelles present in each cell, the mitochondria. These 'power plants' must be continuously supplied with fuel, to maintain all vital functions. A team led ...

BRAF inhibitor treatment causes melanoma cells to shift how they produce energy

March 8, 2013
A multi-institutional study has revealed that BRAF-positive metastatic malignant melanomas develop resistance to treatment with drugs targeting the BRAF/MEK growth pathway through a major change in metabolism. The findings, ...

How cancer cells rewire their metabolism to survive

January 31, 2013
Cancer cells need food to survive and grow. They're very good at getting it, too, even when nutrients are scarce. Many scientists have tried killing cancer cells by taking away their favorite food, a sugar called glucose. ...

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.