With two new methods, scientists hope to improve genome-wide association studies

April 26, 2013, University of California - San Diego
Boosting the powers of genomic science
UC San Diego scientists hope to improve genome-wide association studies. Credit: UC San Diego School of Medicine

As scientists probe and parse the genetic bases of what makes a human a human (or one human different from another), and vigorously push for greater use of whole genome sequencing, they find themselves increasingly threatened by the unthinkable: Too much data to make full sense of.

In a pair of papers published in the April 25, 2013 issue of PLOS Genetics, two diverse teams of scientists, both headed by researchers at the University of California, San Diego School of Medicine, describe novel statistical models that more broadly and deeply identify associations between bits of sequenced DNA called or and say lead to a more complete and accurate understanding of the of many diseases and how best to treat them.

"It's increasingly evident that highly heritable diseases and traits are influenced by a large number of genetic variants in different parts of the genome, each with small effects," said Anders M. Dale, PhD, a professor in the departments of Radiology, Neurosciences and Psychiatry at the UC San Diego School of Medicine. "Unfortunately, it's also increasingly evident that existing statistical methods, like genome-wide association studies (GWAS) that look for associations between SNPs and diseases, are severely underpowered and can't adequately incorporate all of this new, exciting and exceedingly rich data."

Dale cited, for example, a recent study published in Nature Genetics in which researchers used traditional GWAS to raise the number of SNPs associated with from four to 16. The scientists then applied the new statistical methods to identify 33 additional SNPs, more than tripling the number of genome locations associated with the life-threatening .

Generally speaking, the new methods boost researchers' analytical powers by incorporating a priori or prior knowledge about the function of SNPs with their pleiotrophic relationships to multiple phenotypes. Pleiotrophy occurs when one gene influences multiple sets of observed traits or phenotypes.

Dale and colleagues believe the new methods could lead to a paradigm shift in CWAS analysis, with profound implications across a broad range of complex traits and disorders.

"There is ever-greater emphasis being placed on expensive whole efforts," he said, "but as the science advances, the challenges become larger. The needle in the haystack of traditional GWAS involves searching through about one million SNPs. This will increase 10- to 100-fold, to about 3 billion positions. We think these new methodologies allow us to more completely exploit our resources, to extract the most information possible, which we think has important implications for gene discovery, drug development and more accurately assessing a person's overall genetic risk of developing a certain disease."

"All SNPs are not created equal: Genome-wide association studies reveal a consisten pattern of enrichment among functionally annotated SNPs." Authors include Andrew J. Schork, UCSD Cognitive Sciences Graduate Program, UCSD Center for Human Development and UCSD Multimodal Imaging Laboratory; Wesley K. Thompson and John R. Kelsoe, Department of Psychiatry, UCSD; Phillip Pham, Scripps Health, The Scripps Research Institute (TSRI); Ali Torkamani and Nicholas J. Schork, Scripps Health, TSRI; J. Cooper Roddy, UCSD Multimodal Laboratory; Patrick F. Sullivan, University of North Carolina; Michael C. O'Donovan, Cardiff University, United Kingdom; Helena Furberg, Memorial Sloan Kettering Cancer Center; The Tobacco and Genetics Consortium, The Bipolar Disorder Psychiatric Genomics Consortium, The Schizophrenic Psychiatric Genomics Consortium; and Ole A. Andreassen, UCSD Department of Psychiatry, University of Oslo and Oslo University Hospital.

"Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional False Discovery Rate."

Explore further: More links found between schizophrenia, cardiovascular disease

Related Stories

More links found between schizophrenia, cardiovascular disease

January 31, 2013
A new study, to be published in the Feb. 7, 2013 issue of the American Journal of Human Genetics, expands and deepens the biological and genetic links between cardiovascular disease and schizophrenia. Cardiovascular disease ...

First GWAS studies of obsessive-compulsive disorder and Tourette syndrome published

August 14, 2012
Two papers that will appear in the journal Molecular Psychiatry, both receiving advance online release, may help identify gene variants that contribute to the risks of developing obsessive-compulsive disorder (OCD) or Tourette ...

Large meta-analysis finds new genes for type 1 diabetes

September 29, 2011
The largest-ever analysis of genetic data related to type 1 diabetes has uncovered new genes associated with the common metabolic disease, which affects 200 million people worldwide. The findings add to knowledge of gene ...

Recommended for you

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.