With two new methods, scientists hope to improve genome-wide association studies

April 26, 2013
Boosting the powers of genomic science
UC San Diego scientists hope to improve genome-wide association studies. Credit: UC San Diego School of Medicine

As scientists probe and parse the genetic bases of what makes a human a human (or one human different from another), and vigorously push for greater use of whole genome sequencing, they find themselves increasingly threatened by the unthinkable: Too much data to make full sense of.

In a pair of papers published in the April 25, 2013 issue of PLOS Genetics, two diverse teams of scientists, both headed by researchers at the University of California, San Diego School of Medicine, describe novel statistical models that more broadly and deeply identify associations between bits of sequenced DNA called or and say lead to a more complete and accurate understanding of the of many diseases and how best to treat them.

"It's increasingly evident that highly heritable diseases and traits are influenced by a large number of genetic variants in different parts of the genome, each with small effects," said Anders M. Dale, PhD, a professor in the departments of Radiology, Neurosciences and Psychiatry at the UC San Diego School of Medicine. "Unfortunately, it's also increasingly evident that existing statistical methods, like genome-wide association studies (GWAS) that look for associations between SNPs and diseases, are severely underpowered and can't adequately incorporate all of this new, exciting and exceedingly rich data."

Dale cited, for example, a recent study published in Nature Genetics in which researchers used traditional GWAS to raise the number of SNPs associated with from four to 16. The scientists then applied the new statistical methods to identify 33 additional SNPs, more than tripling the number of genome locations associated with the life-threatening .

Generally speaking, the new methods boost researchers' analytical powers by incorporating a priori or prior knowledge about the function of SNPs with their pleiotrophic relationships to multiple phenotypes. Pleiotrophy occurs when one gene influences multiple sets of observed traits or phenotypes.

Dale and colleagues believe the new methods could lead to a paradigm shift in CWAS analysis, with profound implications across a broad range of complex traits and disorders.

"There is ever-greater emphasis being placed on expensive whole efforts," he said, "but as the science advances, the challenges become larger. The needle in the haystack of traditional GWAS involves searching through about one million SNPs. This will increase 10- to 100-fold, to about 3 billion positions. We think these new methodologies allow us to more completely exploit our resources, to extract the most information possible, which we think has important implications for gene discovery, drug development and more accurately assessing a person's overall genetic risk of developing a certain disease."

"All SNPs are not created equal: Genome-wide association studies reveal a consisten pattern of enrichment among functionally annotated SNPs." Authors include Andrew J. Schork, UCSD Cognitive Sciences Graduate Program, UCSD Center for Human Development and UCSD Multimodal Imaging Laboratory; Wesley K. Thompson and John R. Kelsoe, Department of Psychiatry, UCSD; Phillip Pham, Scripps Health, The Scripps Research Institute (TSRI); Ali Torkamani and Nicholas J. Schork, Scripps Health, TSRI; J. Cooper Roddy, UCSD Multimodal Laboratory; Patrick F. Sullivan, University of North Carolina; Michael C. O'Donovan, Cardiff University, United Kingdom; Helena Furberg, Memorial Sloan Kettering Cancer Center; The Tobacco and Genetics Consortium, The Bipolar Disorder Psychiatric Genomics Consortium, The Schizophrenic Psychiatric Genomics Consortium; and Ole A. Andreassen, UCSD Department of Psychiatry, University of Oslo and Oslo University Hospital.

"Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional False Discovery Rate."

Explore further: More links found between schizophrenia, cardiovascular disease

Related Stories

More links found between schizophrenia, cardiovascular disease

January 31, 2013
A new study, to be published in the Feb. 7, 2013 issue of the American Journal of Human Genetics, expands and deepens the biological and genetic links between cardiovascular disease and schizophrenia. Cardiovascular disease ...

First GWAS studies of obsessive-compulsive disorder and Tourette syndrome published

August 14, 2012
Two papers that will appear in the journal Molecular Psychiatry, both receiving advance online release, may help identify gene variants that contribute to the risks of developing obsessive-compulsive disorder (OCD) or Tourette ...

Large meta-analysis finds new genes for type 1 diabetes

September 29, 2011
The largest-ever analysis of genetic data related to type 1 diabetes has uncovered new genes associated with the common metabolic disease, which affects 200 million people worldwide. The findings add to knowledge of gene ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.