Novel monoclonal antibody inhibits tumor growth in breast cancer and angiosarcoma

April 19, 2013, University of North Carolina Health Care
Angiosarcoma cells treated with a monoclonal antibody targeting SFRP2 (right) show a significant reduction compared to an untreated control (left). Credit: DeMore Lab, UNC School of Medicine

A monoclonal antibody targeting a protein known as SFPR2 has been shown by researchers at the University of North Carolina to inhibit tumor growth in pre-clinical models of breast cancer and angiosarcoma.

In a paper published in the April 19 issue of Molecular Cancer Therapeutics, a team led by Nancy Klauber-DeMore, MD, professor of surgery and a member of UNC Lineberger Comprehensive Cancer Center, used a monoclonal antibody to target SFRP2 expressed in cells from triple-negative and the aggressive blood-vessel malignancy angiosarcoma, reducing the rate of . The antibody, created at the University of North Carolina, is the first therapeutic discovered that targets SFRP2.

"We showed in this paper that targeting SFRP2 with a monoclonal antibody in pre-clinical models inhibits tumor growth. This demonstrates that SFRP2 is a for cancer" said Dr. DeMore.

The DeMore lab first discovered the role of SFRP2 in tumor growth while looking to develop an alternative to the FDA-approved anti-angiogenesis drug known as (). Avastin targets the protein VEGF, which has also been tied to angiogenesis (the production of new blood vessels). Although Avastin is of benefit to some patients with cancer, not all tumors respond to Avastin, and of those that respond, some eventually progress. To find a solution for patients whose tumors are resistant to Avastin, DeMore began looking at other proteins linked to angiogenesis that could be used as therapeutic targets.

"We previously microdissected blood vessels from malignant human breast cancers and compared to blood vessels microdissected from normal tissue. We found a number of genes that were highly over-expressed in the malignant blood vessels compared to normal. One of those genes was SFRP2," said Dr. DeMore.

The DeMore lab found that SFRP2 is expressed in a variety of human cancers, including breast, prostate, lung, pancreas, ovarian, colon, kidney tumors, and angiosarcomas, DeMore, working with Dr. Cam Patterson, Ernest and Hazel Craige Distinguished Professor of Cardiovascular Medicine, discovered that SFRP2 acted as a potent stimulator of angiogenesis, leading their team to hypothesize that targeting SFRP2 could inhibit tumor growth. In collaboration with Dr. Russ Mumper, the John A. McNeill Distinguished Professor in the Division of Molecular Pharmaceutics, their group developed a drug to target SFRP2. "Demonstrating that a monoclonal antibody to SFRP2 inhibits tumor growth in pre-clinical models opens up a new potential for drug development. This treatment is not presently available for human studies, but our efforts are focused on obtaining funding for further drug development that would lead to a clinical trial" said DeMore.

Explore further: Common transplant drug inhibits breast cancer growth, study shows

Related Stories

Common transplant drug inhibits breast cancer growth, study shows

May 26, 2011
Tacrolimus, a drug that is commonly used to prevent organ transplantation rejection, inhibits breast cancer growth in pre-clinical studies. The finding from UNC scientists was reported in the May 26th PLoS ONE.

Avastin, Sutent increase breast cancer stem cells, study shows

January 25, 2012
Cancer treatments designed to block the growth of blood vessels were found to increase the number of cancer stem cells in breast tumors in mice, suggesting a possible explanation for why these drugs don't lead to longer survival, ...

Recommended for you

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.