Promoting muscle regeneration in a mouse model of muscular dystrophy

April 1, 2013, Journal of Clinical Investigation

Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease caused by mutations in the protein dystrophin. Dystrophin functions to protect muscle cells from injury and loss of functional dystrophin results in break down and loss of muscle cells. A cellular signal relay system, known as a MAP kinase cascade, regulates the function of muscle stem cells, serving as a source of the new cells that are required for muscle regeneration.

In this issue of the Journal of Clinical Investigation, researchers led by Anton Bennett at Yale University identified the protein MKP-5 as a negative regulator of MAP kinase cascades in muscle stem cells. Loss of MKP-5 in a mouse model of DMD enhanced the development of new muscle cells (myogenesis) and helped prevent muscle degeneration.

These results identify MKP-5 as an important suppressor of myogenesis and suggest that therapeutics that inhibit MKP-5 could be useful in the treatment of degenerative muscle diseases.

Explore further: Stem-cell approach shows promise for Duchenne muscular dystrophy

More information: Improved regenerative myogenesis and muscular dystrophy in mice lacking MKP-5, J Clin Invest. doi:10.1172/JCI64375

Related Stories

Stem-cell approach shows promise for Duchenne muscular dystrophy

January 14, 2013
Researchers have shown that transplanting stem cells derived from normal mouse blood vessels into the hearts of mice that model the pathology associated with Duchenne muscular dystrophy (DMD) prevents the decrease in heart ...

Another muscular dystrophy mystery solved; MU scientists inch closer to a therapy for patients

December 7, 2012
Approximately 250,000 people in the United States suffer from muscular dystrophy, which occurs when damaged muscle tissue is replaced with fibrous, bony or fatty tissue and loses function. Three years ago, University of Missouri ...

Researchers describe a key mechanism in muscle regeneration

December 19, 2012
Researchers at the Bellvitge Biomedical Research Institute (IDIBELL) have described a new selective target in muscle regeneration. This is the association of alpha-enolase protein and plasmin. The finding could be used to ...

Recommended for you

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

First study of radiation exposure in human gut Organ Chip device offers hope for better radioprotective drugs

February 14, 2018
Chernobyl. Three Mile Island. Fukushima. Accidents at nuclear power plants can potentially cause massive destruction and expose workers and civilians to dangerous levels of radiation that lead to cancerous genetic mutations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.