Nanoparticles boost therapeutic potential of siRNA drugs

April 10, 2013
©2013, Mary Ann Liebert, Inc., publishers

New classes of drugs that can silence specific genes, such as small interfering RNAs (siRNAs), offer great therapeutic potential. But the specific delivery of siRNAs to target cells to exert their effects remains a significant challenge. A novel nanoparticle-based approach that enables more efficient delivery of siRNA drugs is presented in Nucleic Acid Therapeutics.

Compared to a commonly used -based transport agent, the cSCK nanoparticles described in this article better protected siRNAs from being degraded in the and were associated with greater gene silencing efficiency of siRNA drugs.

The study authors, Yuefei Shen, Huafeng Fang, Ke Zhang, and John-Stephen Taylor, Washington University, St. Louis, MO, and Ritu Shrestha and Karen Wooley, Texas A&M University, College Station, TX, attribute the better gene silencing efficiency achieved with cSCKs with improved cell uptake of the siRNAs. They present their findings in the article "Effective Protection and Transfection of siRNA by Cationic Shell-Crosslinked Knedel-Like Nanoparticles (cSCKs)." (http://online.liebertpub.com/doi/full/10.1089/nat.2012.0390)

"The potential of siRNAs as therapeutic agents is immense, but we still have to develop better and more targeted delivery methods for many diseases," says Executive Editor Fintan Steele, PhD, SomaLogic, Inc., Boulder, CO. "The work of Shen and colleagues demonstrates that nanotechnology approaches are rapidly progressing towards the goal of meeting the challenge of delivery."

Explore further: Targeted gene silencing drugs are more than 500 times more effective with new delivery method

More information: The article is available on the Nucleic Acid Therapeutics website (http://www.liebertpub.com/nat).

Related Stories

Targeted gene silencing drugs are more than 500 times more effective with new delivery method

December 21, 2012
Small interfering RNAs (siRNAs) are a potent new drug class that can silence a disease-causing gene, but delivering them to a target cell can be challenging. An innovative delivery approach that dramatically increases the ...

Packaging therapeutic RNAs for targeted treatment of breast cancer

April 19, 2012
(Medical Xpress) -- Researchers in the Program in Cellular and Molecular Medicine at Boston Children's Hospital and the Immune Disease Institute (PCMM/IDI) have developed a molecular delivery platform that overcomes one of ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.