Researchers identify new pathway, enhancing tamoxifen to tame aggressive breast cancer

April 23, 2013

Tamoxifen is a time-honored breast cancer drug used to treat millions of women with early-stage and less-aggressive disease, and now a University of Rochester Medical Center team has shown how to exploit tamoxifen's secondary activities so that it might work on more aggressive breast cancer.

The research, published in the journal EMBO Molecular Medicine, is a promising development for women with basal-like breast cancer, sometimes known as triple-negative disease. This subtype has a because it is notoriously resistant to treatment. In fact, basal-like cancers lack the three most common biomarkers – the estrogen receptor, the , and theHer2/neu receptor – and without these receptors, the usual front-line treatments are not effective.

Until recently, tamoxifen was known primarily for its ability to block estrogen receptors on the outside of cancer cells. However, new studies have suggested that when tamoxifen is given in higher doses, it works through a second mechanism of action independent of the . This second mechanism was the focus of the Rochester laboratory.

Led by doctoral student Hsing-Yu Chen and Mark Noble, Ph.D., professor of Biomedical Genetics at URMC, the team studied the molecular mechanism that allows basal-like to escape the secondary effects of tamoxifen, and discovered that two proteins are critical in this escape. One protein, called c-Cbl, controls the levels of multiple receptors that are critical for cancer cell function. A second protein, Cdc42, can inhibit c-Cbl and is responsible for the tumor's underlying resistance.

The team also discovered that targeting Cdc42 – and thus inhibiting the inhibitor - with an experimental drug compound known as ML141 restored c-Cbl's normal function. Through additional work in animal models and in human cell cultures, the team demonstrated that when ML141 is paired with tamoxifen, it enhances the ability of tamoxifen to induce cancer cell death and suppress the growth of new cancer cells. Neither drug alone had the same effect on basal-like breast cells.

Noble believes there is considerable value to targeting Cdc42, because elevated levels of the protein have been observed in multiple types of cancer. (In this context, scientists are also studying the potential for tamoxifen as a therapy for other cancers.)

The powerful ML141-tamoxifen drug combination looks like it has two more important features: It selectively targets cancer cells while sparing normal, healthy cells; and it appears to cripple cancer stem cells, the primitive cells responsible for initiating new tumors and for fueling the bulk of the tumor cell population.

"Our work is very exciting because our approach simultaneously addresses two of the most critical challenges in cancer research—to increase the utility of existing therapies and to discover new vulnerabilities of ," said Noble, who also is a leader at UR's Stem Cell and Regenerative Medicine Institute. "Based on these discoveries, we are already pushing forward with new compounds and with new approaches that might make clinical translation of this discovery much more rapid than would occur with traditional drug-discovery approaches."

Explore further: New finding gives clues for overcoming tamoxifen-resistant breast cancer

Related Stories

New finding gives clues for overcoming tamoxifen-resistant breast cancer

November 2, 2012
(Medical Xpress)—A University of Cincinnati (UC) cancer biology team reports breakthrough findings about specific cellular mechanisms that may help overcome endocrine (hormone) therapy-resistance in patients with estrogen-positive ...

Recommended for you

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.