Peptides for the treatment of severe diseases

April 15, 2013 by Cécilia Carron
A bicyclic peptide (in green and red) bound to a protein. Credit: 2013 LPPT

A new class of drugs for the treatment of severe diseases such as cancer and autoimmune diseases is developed by the start-up Bicycle Therapeutics. The company is generating bicyclic peptides that can selectively bind disease-related proteins and to modulate their function without affecting other proteins in the body.

Over the past fifteen years, new molecules known as have proven to be particularly effective in the treatment of certain types of cancer and such as . They also represent nearly half of the ten drugs that generated the largest revenues in 2012. But their relatively large size both prevents their effective dissemination in some tissues and requires administration by injection. In addition, they cannot be chemically synthesized, which, for the pharmaceutical industry, complicates their manufacturing. Bicycle Therapeutics is developing a new class of therapeutic agents approximately 100 times smaller. These molecules, termed bicyclic peptides, have similar binding qualities as monoclonal antibodies without sharing their limitations. Based in Cambridge, this start-up operates under a license from EPFL.

Bicyclic peptides are named as such because they contain two loops of . They can uniquely bind to almost any and act on the target while leaving healthy cells intact. For example, they can connect to proteins of a tumor cell and inhibit its growth without affecting the surrounding tissues. The therapeutic agents are isolated from large combinatorial libraries of bicyclic peptides using a technique called phage display.

Christian Heinis, currently a professor at EPFL, got the idea during his post-doc at the MRC (Medical Research Council Laboratory of Molecular Biology, Cambridge, UK). He sought to develop a molecular structure similar to that of the antibody that is capable of binding the , but much smaller, allowing efficient tissue distribution and production by chemical synthesis. This new molecular structure would also be compatible with techniques leading to the identification of structures that specifically bind the target proteins.

The researcher, in collaboration with Sir Greg Winter, has developed a technique to isolate bicyclic peptides that effectively bind a range of clinically relevant targets. Currently, Heinis is pursuing his research at EPFL's Laboratory of Therapeutic Proteins and Peptides (LPPT). His research group has recently demonstrated how bicyclic peptides bind to their targets. In addition to his work at EPFL, Heinis serves as a scientific consultant for Bicycle Therapeutics.

In late 2012, the company successfully raised 5.5 million francs to finance the pursuit of candidate molecules for various treatments and to assess their therapeutic potential.

Explore further: New monoclonal antibody developed that can target proteins inside cancer cells

Related Stories

New monoclonal antibody developed that can target proteins inside cancer cells

March 13, 2013
Researchers have discovered a unique monoclonal antibody that can effectively reach inside a cancer cell, a key goal for these important anticancer agents, since most proteins that cause cancer or are associated with cancer ...

ASU bioengineer makes key contribution to cancer treatment research

December 17, 2012
Michael Caplan shares authorship of a paper on cancer treatment research published this week in the prestigious Proceedings of the National Academy of Sciences journal.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.