Researchers probe the enigma of healing element that is also the enemy

April 3, 2013, Hebrew University of Jerusalem

The same factor in our immune system that is instrumental in enabling us to fight off severe and dangerous inflammatory ailments is also a player in doing the opposite at a later stage, causing the suppression of our immune response.

Why and how this happens and what can be done to mediate this process for the benefit of mankind is the subject of an article published online in the journal Immunity by Ph.D. student Moshe Sade-Feldman and Prof. Michal Baniyash of the Lautenberg Center for General and Tumor Immunology at the Institute for Medical Research Israel-Canada at the Hebrew University Faculty of Medicine.

poses a major global health problem and is common to different pathologies—such as (diabetes, rheumatoid arthritis, lupus and Crohn's), chronic inflammatory disorders, (HIV, leprosy, leishmaniasis) and cancer. Cumulative data indicate that at a certain stage of each of these diseases, the immune system becomes suppressed and results in disease progression.

In their previous work, the Hebrew University researchers had shown that in the course of chronic inflammation, unique with suppressive features termed myeloid derived (MDSCs) are generated in the bone marrow and migrate into the body's organs and blood, imposing a general .

A complex network of inflammatory compounds persistently secreted by the body's normal or support MDSC accumulation, activation and suppressive functions. One of these compounds is -a (TNF-a), which under acute immune responses (short episodes), displays beneficial effects in the initiation of immune responses directed against invading pathogens and tumor cells.

However, TNF-a also displays harmful features under chronic responses, as described in pathologies such as , psoriasis, , Crohn's disease and cancer, leading to complications and disease progression. Therefore, today several FDA- approved TNF-a blocking reagents are used in the clinic for the treatment of such pathologies.

What has remained unclear until now, however, is just how TNF-a plays its deleterious role in manipulating the host's immune system towards the generation of a suppressive environment.

In their work, the Hebrew University researchers discovered the mechanisms underlying the TNF-a function, a key to controlling this factor and manipulating it, perhaps, for the benefit of humans. Using experimental mouse models, they showed unequivocally how TNF-a is critical in the induction of immune suppression generated during chronic inflammation. The TNF-a was seen to directly affect the accumulation and suppressive function of MDSCs, leading to an impaired host's immune responses as reflected by the inability to respond against invading pathogens or against developing tumors.

Further, the direct role of how TNF-a works in humans was mimicked by injecting the FDA-approved anti-TNF-a drug, etanercept, into mice at the exacerbated stage of an inflammatory response, when MDSC accumulation was observed in the blood. The etanercept treatment changed the features of MDSCs and abolished their suppressive activity, leading to the restoration of the host's immune function.

Taken together, the results show clearly how the TNF-a-mediated inflammatory response, whether acute or chronic, will dictate its beneficial or harmful consequence on the immune system. While during acute inflammation TNF-a is vital for immediate immune defense against pathogens and clearance of tumor cells, during chronic inflammation—under conditions where the host is unable to clear the pathogen or the —TNF-a is harmful due to the induction of immune suppression.

These results, providing new insight into the relationship between TNF-a and the development of an immune suppression during chronic inflammation, may aid in the generation of better therapeutic strategies against various pathologies when elevated TNF-a and MDSC levels are detected, as seen, for example, in tumor growths.

Explore further: Study identifies novel role for a protein that could lead to new treatments for rheumatoid arthritis

More information: Sade-Feldman, M. et al. Tumor Necrosis Factor-α Blocks Differentiation and Enhances Suppressive Activity of Immature Myeloid Cells during Chronic Inflammation, Immunity, Volume 38, Issue 3, 541-554, 07 March 2013.

Related Stories

Study identifies novel role for a protein that could lead to new treatments for rheumatoid arthritis

May 22, 2011
A new study by rheumatologists at Hospital for Special Surgery in New York has shown that a powerful pro-inflammatory protein, tumor necrosis factor (TNF), can also suppress aspects of inflammation. The researchers say the ...

Study finds potential key to immune suppression in cancer

January 19, 2012
In a study investigating immune response in cancer, researchers from Moffitt Cancer Center in Tampa, Fla., and the University of South Florida have found that interaction between the immune system's antigen-specific CD4 T ...

Scientists improve arthritis treatments: Rheumatism patients can hope for a new therapy

February 14, 2013
Together with colleagues from the international rheumatic diseases research community, scientists of the Charité – Universitätsmedizin Berlin have presented a new therapy approach for the treatment of rheumatoid arthritis ...

Medroxyprogesterone acetate linked to immune suppression

February 1, 2013
(HealthDay)—Use of the injectable contraceptive depot medroxyprogesterone acetate (MPA), common in areas such as sub-Saharan Africa with high HIV-1 prevalence, is associated with suppression of the immune response, according ...

Recommended for you

Unexpected immune activation illustrated in the cold

February 19, 2018
Researchers at Utrecht University and Leiden University Medical Center, the Netherlands, have imaged an important immune system on-switch. Their novel technical approach has led to the discovery of two ways in which the immune ...

Immune signature predicts asthma susceptibility

February 16, 2018
Asthma is a chronic inflammatory disease driven by the interplay of genetics, environmental factors and a diverse cast of immune cells. In their latest study, researchers at La Jolla Institute for Allergy and Immunology (LJI) ...

Scientists identify immune cascade that fuels complications, tissue damage in chlamydia infections

February 13, 2018
Closing a critical gap in knowledge, Harvard Medical School scientists have unraveled the immune cascade that fuels tissue damage and disease development in chlamydia infection—the most common sexually transmitted disease ...

Mouse study adds to evidence linking gut bacteria and obesity

February 12, 2018
A new Johns Hopkins study of mice with the rodent equivalent of metabolic syndrome has added to evidence that the intestinal microbiome—a "garden" of bacterial, viral and fungal genes—plays a substantial role in the development ...

Cancer killing clue could lead to safer and more powerful immunotherapies

February 12, 2018
New research could help to safely adapt a new immunotherapy—currently only effective in blood cancers—for the treatment of solid cancers, such as notoriously hard-to-treat brain tumours.

Mechanism behind autoimmune disorder revealed

February 7, 2018
Northwestern Medicine scientists discovered a previously-unknown mechanism of disease behind a specific autoimmune disorder, findings published in the Proceedings of the National Academy of Sciences.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.