Rats' and bats' brains work differently on the move

April 18, 2013, University of Maryland
Flying animals, like this big brown bat in Prof. Cynthia Moss' laboratory, may navigate differently than ground-dwelling rodents. Comparative studies are needed as neuroscientists develop models of how the brain processes spatial information, Moss says. Credit: Jessica Nelson

A new study of brain rhythms in bats and rats challenges a widely used model - based on studies in rodents - of how animals navigate their environment. To get a clearer picture of the processes at work in the mammal brain during spatial navigation, neuroscientists must closely study a broad range of animals, say the two University of Maryland College Park scientists involved in the study.

In the April 19, 2013 issue of Science, the University of Maryland researchers and two colleagues at Boston University reported significant differences between rats' and bats' in a part of the brain used in navigation.

The researchers focused on specialized cells that process spatial information in a region called the medial entorhinal cortex, a hub of neural networks for memory and navigation. Earlier experiments showed rats' in this area fire continuously in a rhythmic electrical signal called a theta wave when the animals are navigating through space. Some models of the brain treat theta waves as a key element of in all mammals, but this idea is based on rodent research, Moss said.

The Boston University-University of Maryland team tested for rhythmic electrical responses at the cellular level in bat and rat brain tissue. They found evidence for theta waves in the rat cells. But in the bat cells these waves were absent, said Moss, who has studied bats since the 1980s.

"This raises questions as to whether theta rhythms are actually doing what the spatial navigation theory proposes," said a co-author, UMD biology researcher Katrina MacLeod. "To understand brains, including ours, we really must study neural activity in a variety of animals."

Humans and other mammals share many common features of , and the differences in between bats and rats raises questions about how spatial information is represented in all brains.

Explore further: Fluctuations in size of brain waves contribute to information processing

More information: "Bat and Rat Neurons Differ in Theta-Frequency Resonance Despite Similar Coding of Space," by J.G. Heys, K.M. MacLeod, C.F. Moss, and M.E. Hasselmo, Science, 2013.

See also: Neural activity in bats measured in-flight

Related Stories

Fluctuations in size of brain waves contribute to information processing

February 8, 2013
Cyclical variations in the size of brain wave rhythms may participate in the encoding of information by the brain, according to a new study led by Colin Molter of the Neuroinformatics Japan Center, RIKEN Brain Science Institute.

Researchers probe link between theta rhythm, ability of animals to track location

April 28, 2011
In a paper to be published today in the journal Science, a team of Boston University researchers under the direction of Michael Hasselmo, professor of psychology and director of Boston University's Computational Neurophysiology ...

Rhythms in the brain help give a sense of location, study shows

January 10, 2013
Research at the University of Edinburgh tracked electrical signals in the part of the brain linked to spatial awareness.

GPS in the head? Rhythmic activity of neurons to code position in space

September 15, 2011
Prof. Dr. Motoharu Yoshida and colleagues from Boston University investigated how the rhythmic activity of nerve cells supports spatial navigation. The research scientists showed that cells in the entorhinal cortex, which ...

Brain state affects memory recall

June 13, 2011
Lost your keys? Your brain might be in a better state to recall where you put them at some times than at others, according to new research from UC Davis. A paper describing the work is published June 13 in the journal Proceedings ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

gwrede
not rated yet Apr 18, 2013
Navigating in terrain is very different from navigating in flight.

The rat faces what is essentially a 2D maze, even if it can climb to other levels. It can observe and learn the maze at a more leisurely pace, and even stop whenever it "needs to think". (Which it actually does all the time!)

The bat can't stop in mid-flight to "think" or figure out the surroundings. Therefore its navigation has to be more "real-time" and fluid. And of course, the bat has to actively use sonar, instead of just seeing all obstacles and targets.

All this places very different, and much higher demands on the bat brain. No wonder it has developed some fundamentally different operating principles.
MrVibrating
not rated yet Apr 19, 2013
Some species of bat (perhaps all using sonar) separate communicative and navigational calls into lower and higher octave bands respectively - hence perhaps their 'theta' rhythms likewise occupy higher registers..?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.