Scientists develop 3-D stem cell culture technique to better understand Alzheimer's disease

April 2, 2013, New York Stem Cell Foundation

A team of researchers at The New York Stem Cell Foundation Research Institute led by Scott Noggle, PhD, Director of the NYSCF Laboratory and the NYSCF – Charles Evans Senior Research Fellow for Alzheimer's Disease, and Michael W. Nestor, PhD, a NYSCF Postdoctoral Research Fellow, has developed a technique to produce three-dimensional cultures of induced pluripotent stem (iPS) cells called embryoid bodies, amenable to live cell imaging and to electrical activity measurement. As reported in their Stem Cell Research study, these cell aggregates enable scientists to both model and to study diseases such as Alzheimer's and Parkinson's disease.

The NYSCF Alzheimer's disease research team aims to better understand and to find treatments to this disease through . For such disorders in which neurons misfire or degenerate, the NYSCF team creates "disease in a dish" models by reprogramming patients' skin and or blood samples into induced pluripotent stem (iPS) cells that can become neurons and the other affected in the diseases.

The cells in our body form three-dimensional networks, essential to tissue function and overall health; however, previous techniques to form complex brain tissue resulted in structures that, while similar in form to naturally occurring neurons, undermined imaging or electrical recording attempts.

In the current study, the Noggle and Nestor with NYSCF scientists specially adapted two-dimensional culture methods to grow three-dimensional neuron structures from iPS cells. The resultant neurons were "thinned-out," enabling calcium-imaging studies, which measure the electrical activity of cells like neurons.

"Combining the advantages of iPS cells grown in a with those of a 2D system, our technique produces cells that can be used to observe electrical activity of putative networks of biologically active neurons, while simultaneously imaging them," said Nestor. "This is key to modeling and studying ."

Neural networks, thought to underlie learning and memory, become disrupted in Alzheimer's disease. By generating aggregates from iPS cells and comparing these to an actual patient's , scientists may uncover how disease interferes with these cell-to-cell interactions and understand how to intervene to slow or stop Alzheimer's disease.

"This critical new tool developed by our Alzheimer's team will accelerate Alzheimer's research, enabling more accurate manipulation of cells to find a cure to this disease," said Susan L. Solomon, CEO of NYSCF.

Explore further: New York Stem Cell Foundation scientists featured for new model of Alzheimer's disease

Related Stories

New York Stem Cell Foundation scientists featured for new model of Alzheimer's disease

July 16, 2012
A team of scientists at The New York Stem Cell Foundation (NYSCF) Laboratory led by Scott Noggle, PhD, NYSCF–Charles Evans Senior Research Fellow for Alzheimer's Disease, has developed the first cell-based model of Alzheimer's ...

Creating neurons directly from skin cells of humans

May 27, 2011
The New York Stem Cell Foundation (NYSCF) – a non-profit organization dedicated to advancing cures for major diseases through stem cell research – today applauded the announcement by Stanford University scientists, ...

Bypassing stem cells, scientists make neurons directly from human skin

August 4, 2011
Researchers have come up with a recipe for making functional neurons directly from human skin cells, including those taken from patients with Alzheimer's disease. The new method may offer a critical short cut for generating ...

Recommended for you

Rocky start for Alzheimer's drug research in 2018

January 19, 2018
The year 2018, barely underway, has already dealt a series of disheartening blows to the quest for an Alzheimer's cure.

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.