Scientists identify important regulator for synapse stability and plasticity

April 25, 2013
FMI scientists identify important regulator for synapse stability and plasticity
A Drosophila neuromuscular junction. Motoneuron membrane (blue), synaptic vesicles (green), postsynaptic density (red).

(Medical Xpress)—Using the fruit fly as a model organism, neurobiologists from the Friedrich Miescher Institute for Biomedical Research have identified the L1-type CAM neuroglian as an important regulator for synapse growth, function and stability. They show that the interaction of neuroglian with ankyrin provides a regulatory module to locally control synaptic connectivity and function.

From its earliest beginnings until an organism's death, the nervous system changes. Connections between nerve cells are formed, stabilized and disassembled not only during the development of the brain in the womb and in early childhood, but also in adults as they learn or form memories. In this flow of change, cell adhesion molecules (CAMs), which mediate cell-, are thought to provide stability and guidance in a Velcro-like-manner as synapses change.

Jan Pielage and his group at the Friedrich Miescher Institute for Biomedical Research have carried out an unbiased genetic screen to identify cell adhesion molecules that control synapse maintenance and plasticity, using the fruit fly, . As they publish in the latest issue of PLOS Biology, they identified the called neuroglian as a key regulator for synapse stability.

Neuroglian is a transmembrane protein with a large extracellular domain and an intracellular signaling domain. Through the extracellular domain interactions with CAMs on neighboring cells are established. This stabilizes the site and is a prerequisite for synapse formation. "We think that the extracellular interactions of neuroglian are essential for neurite outgrowth and axon targeting during early development," explains Pielage.

The scientists could then show that the intracellular domain, which interacts with the adaptor molecule called ankyrin, modulates the stability of synapses. At the , where innervate the muscle, the strength of the interaction of neuroglian with ankyrin modulates the balance between synapse growth and stability. As the binding affinity of ankyrin for neuroglian decreased, e.g. due to phosphorylation, the mobility of neuroglian within the motorneuron increased. This change in mobility caused the destabilization of synapses but at the same time, it allowed the formation of new synapses at other places. "This organization permits easy regulation, and allows the fine tuning of synaptic connectivity along one nerve cell without disrupting the neuronal network or impairing overall circuit stability," said Pielage.

In the central nervous system, where synapses are formed between two neurons, a homophilic interaction of neuroglian is required to establish the contact between pre- and postsynaptic neurons. A differential regulation of ankyrin binding is then necessary to coordinate transsynaptic development and to enable synapse maturation and function. "Modulation of the neuroglian-ankyrin interaction might enable local and precise control of synaptic connectivity," comments Pielage.

This comprehensive structure function study provides a molecular basis for previous observations linking mutations in the ankyrin binding domain of the human homologue of neuroglian, L1CAM, to neurological L1/CRASH disorders that include mental retardation.

Explore further: Protein family linked to autism suppresses the development of inhibitory synapses

More information: Enneking, E. et al. (2013) Transsynaptic coordination of synaptic growth, function, and stability by the L1-type CAM neuroglian. PLOS Biology, 11: e1001537. www.plosbiology.org/article/in … journal.pbio.1001537

Related Stories

Protein family linked to autism suppresses the development of inhibitory synapses

January 28, 2013
Synapse development is promoted by a variety of cell adhesion molecules that connect neurons and organize synaptic proteins. Many of these adhesion molecules are linked to neurodevelopmental disorders; mutations in neuroligin ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.