Antibiotics: A new understanding of sulfonamide nervous system side effects

May 23, 2013
Antibiotics: A new understanding of sulfonamide nervous system side effects
3D image of a sulfonamide binding to the enzyme that makes BH4 © 2013 EPFL

Since the discovery of Prontosil in 1932, sulfonamide antibiotics have been used to combat a wide spectrum of bacterial infections, from acne to chlamydia and pneumonia. However, their side effects can include serious neurological problems like nausea, headache, dizziness, hallucinations and even psychosis. In a recent Science publication, EPFL researchers have shown for the first time how sulfonamides can interfere with a patient's nervous system.

The problem is that, even though we know how sulfonamides work, we do not understand the actual behind their side effects. Consequently, it is difficult to modify drug structure or customize therapeutic regimes in order to better serve the needs of patients. That is the critical issue addressed by a team of EPFL scientists lead by Kai Johnsson at EPFL's Laboratory of .

The team drew from previous research showing that blocking the activity of a certain enzyme (sepiapterin reductase) affects the levels of an important molecule called tetrahydrobiopterin (BH4) in cells. BH4 is critical for the production of neurotransmitters like serotonin and dopamine, and BH4 deficiency causes similar to those associated with sulfonamide side effects.

The EPFL scientists showed for the first time that sulfonamides actually bind to the part of the enzyme that makes BH4. Using a high-throughput drug , the researchers identified ten sulfonamides that strongly inhibit the enzyme. Taking advantage of the expertise of Florence Pojer at EPFL's Global Health Institute, the scientists were able to solve the enzyme's molecular structure and determine how sulfonamides bind to it.

Sulfonamides also seem to act on the actual that synthesizes BH4, as increasing doses of the drugs decreased BH4 concentrations in . The critical finding, however, was that, along with BH4, sulfonamides also reduced the actual production of dopamine. By giving cultured human nerve cells different sulfonamides, the researchers found that their natural production of dopamine decreased in proportion to the sulfonamide doses. In addition, it was clear that the impact on dopamine production was different between sulfonamides.

The group's work shows for the first time that sulfonamides interfere with the biosynthesis of neurotransmitters, which can account for their reported neurological side effects. It also helps us understand how the activity of these drugs relates to their molecular structure, and suggests ways of improving their clinical use.

"Once you know what's happening you can begin to think about strategies to address the problem – and that is the impact of this work", says Kai Johnsson. "Historically, I don't think that there is a more important class of drugs than sulfonamides, and now we can understand them better. It also reminds us that surprising discoveries can be made even for drugs this old."

Explore further: Critical element that improves vascular function in postmenopausal women found

More information: "Tetrahydrobiopterin Biosynthesis as an Off-Target of Sulfa Drugs," by H. Haruki, Science, 2013.

Related Stories

Critical element that improves vascular function in postmenopausal women found

February 14, 2012
Researchers studying why arteries stiffen in postmenopausal women have found a specific chemical cofactor that dramatically improves vascular function.

Improving the search for new schizophrenia treatments

April 5, 2013
(Medical Xpress)—Controlling the symptoms of schizophrenia is the job of antipsychotic drugs which block a set of specific neural signals. But the way these drugs work can lead to a host of severe and debilitating long-term ...

Group Therapy: New approach to psychosis treatment could target multiple nervous system receptors

February 1, 2013
Antipsychotic drugs, used in the treatment of psychotic disorders involving severe delusions and hallucinations, have been studied for more than 70 years. Currently available antipsychotic drugs, however, only alleviate certain ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.