Cytomegalovirus might speed brain-cancer growth

June 1, 2013, Ohio State University Medical Center

A virus that infects most Americans but that usually remains dormant in the body might speed the progression of an aggressive form of brain cancer when particular genes are shut off in tumor cells, new research shows. The animal study by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) and at Dana Farber Cancer Institute suggests that cytomegalovirus (CMV) might significantly accelerate the development and progression of glioblastoma, a deadly form of brain cancer.

The virus by itself does not cause cancer, the study suggests, but it might influence when changes occur that silence two genes called p53 and Nf1 in . These genes are protective "tumor suppressor" genes that normally cause cells to die before they become malignant. But cancer-related changes can silence them, enabling to survive, multiply and form tumors.

The findings are published in the journal Cancer Research. Some 50 to 80 percent of Americans become infected with CMV by age 40. The virus is transmitted by contact with infected saliva and other body fluids, and through sexual contact. Most people are infected early in life and then the virus remains dormant.

"CMV has been detected in many , suggesting that it might be reactivated when cancer occurs in the body," says co-corresponding author and researcher Dr. Chang-Hyuk Kwon, assistant professor of neurological surgery, at the OSUCCC – James and at the Dardinger Center for Neuro-oncology and Neurosciences.

The researchers also learned that CMV stimulates tumor- by activating a biochemical called STAT3. In healthy cells, STAT3 plays an important role in controlling cell proliferation.

"Our data indicate that CMV contributes to glioblastoma when already-mutated proliferate using the STAT3 signaling pathway," Kwon says. "We believe that CMV's action occurs in the tumor's cells of origin early in tumor initiation."

The findings raise questions about how cancer is studied, says co-corresponding author Dr. E. Antonio Chiocca, chairman of neurosurgery at the Brigham and Women's Hospital and surgical director for the Center for Neuro-oncology at Dana-Farber Cancer Institute in Boston.

"First, we usually study cancer in models that are virus-free, but our findings suggest that CMV might play a significant role in human cancers," he says.

"Secondly, anti-viral therapy against CMV might now be justified for human cancers, and immune responses to such cancer-modulating viruses should be carefully studied," Chiocca says.

About 18,500 new cases of glioblastoma multiforme are expected annually in the U.S., and 12,760 Americans are expected to die of the disease.

Kwon, Chiocca and their colleagues conducted the study using two mouse models infected with murine CMV (MCMV). One model developed glioblastoma spontaneously; the other received implants of human glioblastoma cells. Key technical findings include:

  • MCMV-infected mice with genetic mutations in p53 and NF1 in their brain cells that predisposed them to spontaneous glioblastoma had shorter survival than non-MCMV-infected mice with the same mutations;
  • Implanting human gliomas into the brains of MCMV-infected animals significantly shortened their survival compared with controls;
  • MCMV infection increased levels of activated STAT3 in neural stem cells, the cells in which glioblastoma is thought to originate;
  • Human CMV increased STAT3 activation and proliferation of patient-derived glioblastoma cells; a inhibitor reversed this effect in cell and animal models.

Explore further: Patient's own immune cells may blunt viral therapy for brain cancer

Related Stories

Patient's own immune cells may blunt viral therapy for brain cancer

November 25, 2012
Doctors now use cancer-killing viruses to treat some patients with lethal, fast-growing brain tumors. Clinical trials show that these therapeutic viruses are safe but less effective than expected.

Poliovirus vaccine trial shows early promise for recurrent glioblastoma

May 21, 2013
An attack on glioblastoma brain tumor cells that uses a modified poliovirus is showing encouraging results in an early study to establish the proper dose level, researchers at Duke Cancer Institute report.

Research shows immune system response is detrimental to novel brain cancer therapy

December 4, 2012
For the first time, researchers have demonstrated that the response of natural killer (NK) cells is detrimental to glioblastoma virotherapy, a novel way of treating malignant brain cancer by injecting a virus into the tumor. ...

Cancer cells send out the alarm on tumor-killing virus

March 15, 2012
Brain-tumor cells that are infected with a cancer-killing virus release a protein "alarm bell" that warns other tumor cells of the impending infection and enables them to mount a defense against the virus, according to a ...

Herpes infections: Natural Killer cells activate hematopoiesis

May 16, 2013
Infections can trigger hematopoiesis at sites outside the bone marrow – in the liver, the spleen or the skin. LMU researchers now show that a specific type of immune cell facilitates such "extra medullary" formation of ...

New oncolytic virus shows improved effectiveness in preclinical testing

October 27, 2011
A new fourth-generation oncolytic virus designed to both kill cancer cells and inhibit blood-vessel growth has shown greater effectiveness than earlier versions when tested in animal models of human brain cancer.

Recommended for you

Pancreatic cancer's addiction could be its end

November 13, 2018
Cancer cells are often described as cells "gone bad" or "renegade." New research reveals that in some of the deadliest cases of pancreatic cancer, these rebellious cells have an unexpected addiction. Now, scientists are investigating ...

Solving the mystery of NPM1 in acute myeloid leukemia

November 13, 2018
Although it has long been recognized that mutations of gene NPM1 play an important role in acute myeloid leukemia, no one has determined how the normal and the mutated forms of the protein NPM1 function.

Cognitive decline—radiation—brain tumor prevented by temporarily shutting down immune response

November 13, 2018
Treating brain tumors comes at a steep cost, especially for children. More than half of patients who endure radiation therapy for these tumors experience irreversible cognitive decline, a side-effect that has particularly ...

Study finds promising therapeutic target for aggressive type of breast cancer

November 13, 2018
A new Nature Communications study led by University of Kentucky Markey Cancer Center researchers suggests that an enzyme known as Prolyl 4-hydroxylase subunit alpha-1 (P4HA1) is a potential therapeutic target for triple negative ...

Obesity both feeds tumors and helps immunotherapy kill cancer

November 12, 2018
A groundbreaking new study by UC Davis researchers has uncovered why obesity both fuels cancer growth and allows blockbuster new immunotherapies to work better against those same tumors.

Cancer stem cells get energy from protein, and it's proving to be their Achilles' heel

November 12, 2018
Think of energy metabolism like a party popper: Ripping something apart releases a bang. Most of your cells rip apart sugar to release the "bang" of energy. Sometimes they rip apart fats, and in a pinch, cells can even metabolize ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.