Research finds spontaneous mutations are major cause of congenital heart disease

May 12, 2013, NIH/National Heart, Lung and Blood Institute

Every year, thousands of babies are born with severely malformed hearts, disorders known collectively as congenital heart disease. Many of these defects can be repaired though surgery, but researchers don't understand what causes them or how to prevent them. New research shows that about 10 percent of these defects are caused by genetic mutations that are absent in the parents of affected children.

Although genetic factors contribute to congenital heart disease, many children born with heart defects have healthy parents and siblings, suggesting that new mutations that arise spontaneously—known as de novo mutations—might contribute to the disease. "Until recently, we simply didn't have the technology to test for this possibility," says Howard Hughes Medical Institute (HHMI) investigator Richard Lifton. Lifton, who is at Yale School of Medicine, together with Christine Seidman, an HHMI investigator at Brigham and Women's Hospital and colleagues at Columbia, Mt. Sinai, and the University of Pennsylvania, collaborated to study congenital heart disease through the National Heart Lung and Blood Institute's Pediatric Cardiac Genomics Consortium.

Using robust sequencing technologies developed in recent years, the researchers compared the protein-coding regions of the genomes of children with and without congenital heart disease and their parents, and found that new mutations could explain about 10 percent of severe cases. The results demonstrated that mutations in several hundred different genes contribute to this trait in different patients, but were concentrated in a pathway that regulates key developmental genes. These genes affect the epigenome, a system of chemical tags that modifies gene expression. The findings were published online in the journal Nature on May 12, 2013.

For the current study, the investigators began with 362 families consisting of two healthy parents with no family history of heart problems and a child with severe congenital heart disease. By comparing genomes within families, they could pinpoint mutations that were present in each child's DNA, but not in his or her parents. The team also studied 264 healthy families to compare de novo mutations in the genomes of healthy children.

The team focused their gene-mutation search on the exome – the small fraction of each person's genome that encodes proteins, where disease-causing mutations are most likely to occur. Children with and without congenital heart disease had about the same number of de novo mutations—on average, slightly less than one protein-altering mutation each. However, the locations of those mutations were markedly different in the two groups. "The mutations in patients with congenital heart disease were found much more frequently in genes that are highly expressed in the developing heart," Seidman says.

The differences became more dramatic when the researchers zeroed in on mutations most likely to impair protein function, such as those that would cause a protein to be cut short. Children with severe congenital heart disease were 7.5 times more likely than healthy children to have a damaging mutation in genes expressed in the developing heart.

Jonathan R. Kaltman, M.D., of the National Heart, Lung, and Blood Institute's Division of Cardiovascular Sciences, and Richard Lifton, M.D., Ph.D., chair of the Department of Genetics at Yale University, discuss findings from the first large-scale gene sequencing analysis of congenital heart disease. The findings, which were published online March 12, 2013, in the journal Nature, will inform future research into the causes of congenital heart disease. Credit: National Heart, Lung, and Blood Institute

The researchers found mutations in a variety of genes, but one cellular pathway was markedly enriched in the children with heart defects. That pathway helps regulate gene activity by affecting how DNA is packaged inside cells. The body's DNA is wrapped around proteins called histones, and chemical tags called methyl groups are added to histones to control which genes are turned on and off. In children with congenital heart disease, the team found an excess of mutations in genes that affect histone methylation at two sites that are known to regulate key developmental genes.

Overall, the researchers found that de novo mutations contribute to 10 percent of cases of severe congenital heart disease. Roughly a third of this contribution is from the histone-methylation pathway, Lifton says. He also notes that a mutation in just one copy of a gene in this pathway was enough to markedly increase the risk of a heart defect.

Direct sequencing of protein-coding regions of the human genomes to hunt down de novo mutations has only been applied to one other common congenital disease—autism. In that analysis, Lifton and his colleagues at Yale, as well as HHMI investigator Evan Eichler and colleagues at University of Washington, found mutations in some of the same genes mutated in congenital heart disease, and the same histone modification pathway appears to play a major role in autism as well, raising the possibility that this pathway may be perturbed in a variety of congenital disorders, Lifton says.

Even if the disease can't be prevented, identifying the mutations responsible for severe heart defects might help physicians better care for children with congenital heart disease. "After we repair the hearts of these children, some children do great and some do poorly," Seidman says. Researchers have long suspected that this might be due to differences in the underlying causes of the disease. Understanding those variations might help doctors improve outcomes for their patients.

Explore further: AHA statement: People with congenital heart disease need physical activity

More information: dx.doi.org/10.1038/nature12141

Related Stories

AHA statement: People with congenital heart disease need physical activity

April 29, 2013
A new scientific statement from the American Heart Associations reminds physicians and people with congenital heart disease that regular physical activity is still important and should be promoted.

ACC: Adult admissions for congenital heart disease up

March 7, 2013
(HealthDay)—Annual adult admissions for congenital heart disease are increasing and approaching that of pediatric admissions, according to a study published online March 7 in the Journal of the American Medical Association ...

Stress during pregnancy may raise heart defect risk for baby

March 25, 2013
(HealthDay)—Stress in mothers before and during pregnancy may boost the risk of congenital heart defects in their children, more new evidence suggests. But the findings aren't conclusive, and the effect—if it exists—appears ...

Calcium-binding protein mutations found in heart rhythm disorders

February 6, 2013
A team led by Vanderbilt University investigators has discovered two new genes – both coding for the signaling protein calmodulin – associated with severe early-onset disorders of heart rhythm. The findings, reported ...

One-year survival up for critical congenital heart defects

April 22, 2013
(HealthDay)—For infants with critical congenital heart defects (CCHDs), one-year survival has improved over time, with an increased risk of mortality associated with earlier diagnosis, low birth weight, and maternal age, ...

Recommended for you

Drug now in clinical trials for Parkinson's strengthens heart contractions in animals

July 20, 2018
A drug currently in clinical trials for treating symptoms of Parkinson's disease may someday have value for treating heart failure, according to results of early animal studies by Johns Hopkins Medicine researchers.

'Good cholesterol' may not always be good

July 19, 2018
Postmenopausal factors may have an impact on the heart-protective qualities of high-density lipoproteins (HDL) - also known as 'good cholesterol' - according to a study led by researchers in the University of Pittsburgh Graduate ...

Using adrenaline in cardiac arrests results in less than 1 percent more people leaving hospital alive

July 18, 2018
A clinical trial of the use of adrenaline in cardiac arrests has found that its use results in less than 1% more people leaving hospital alive—but almost doubles the risk of severe brain damage for survivors of cardiac ...

Omega 3 supplements have little or no heart or vascular health benefit: review

July 17, 2018
New evidence published today shows there is little or no effect of omega 3 supplements on our risk of experiencing heart disease, stroke or death.

Researchers discover new genes associated with heart function

July 17, 2018
A new study from an international research team, led by Dr. Yalda Jamshidi at St George's, University of London, has identified new genes associated with heart function and development.

Southern diet could be deadly for people with heart disease

July 12, 2018
People with a history of heart disease who eat a traditional Southern diet are more likely to die than those who follow a Mediterranean dietary pattern, according to new research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.