Become a marathon runner with the protein PGC-1alpha

May 15, 2013, University of Basel
Become a marathon runner with the protein PGC-1α
The protein PGC-1α is associated with high endurance muscles. (Image: KJohansson / wikipedia)

Even with a greater muscle mass, a sprinter cannot win a marathon. His specially-trained and strengthened muscles will fatigue faster than the endurance-trained muscles of a long distance runner. The research group of Prof. Christoph Handschin of the Biozentrum, University of Basel, shows that during endurance exercise the protein PGC-1α shifts the metabolic profile in the muscle. The results are published in the current issue of the journal PNAS.

complete a special training program to improve their endurance capacity. Accordingly, their muscles are able to sustain the provision of energy using aerobic, hence oxygen consuming processes. Untrained athletes and also bodybuilders reach however, in a much earlier stage, a condition where their muscles produce energy without oxygen. This results in the production of lactate in the muscles. At the same time, the muscles begin to fatigue and the legs become heavy.

Less lactate with endurance training

The reason for this difference: the muscles switch their metabolism during . Importantly, amongst others, the production of the protein PGC-1α is stimulated. Mice with a permanently increased PGC-1α develop the same high endurance muscles as those in trained athletes. Handschin and his team were able to show in these mice that PGC-1α prevents the formation and accumulation of lactate in the muscles. For this, the researchers trained the mice for an hour on the treadmill. After a few minutes, the lactic acid rates increased in the untrained mice, followed by performance degradation and exhaustion. Mice with a high PGC-1α, however, maintained their performance levels until the end of the training. Their lactate levels remained low despite a high training load. "As it turned out," said Handschin, "PGC-1α changed the composition of an enzyme complex. This reduced the formation of lactate. Also, the remaining lactate in the muscle is converted and used immediately as energy substrate."

Sport therapy for diabetics

Also in human skeletal muscle, PGC-1α controls the balance between the formation and degradation of lactate. Disturbances in metabolism are common in obese and diabetic patients. The stimulation of PGC-1α production by activity is therefore an important approach to improve the metabolism in these patients. This could help prevent the resulting damage and progressive physical limitations to the body caused by metabolic diseases.

Explore further: Scientists find regulator linking exercise to bigger, stronger muscles

More information: Summermatter, S. et al. Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A. Proceedings of the National Academy of Sciences (PNAS), Published online May 6, 2013. www.pnas.org/content/early/201 … /1212976110.abstract

Related Stories

Scientists find regulator linking exercise to bigger, stronger muscles

December 6, 2012
Scientists at Dana-Farber Cancer Institute have isolated a previously unknown protein in muscles that spurs their growth and increased power following resistance exercise. They suggest that artificially raising the protein's ...

Lift weights to lower blood sugar? White muscle helps keep blood glucose levels under control

April 7, 2013
Researchers in the Life Sciences Institute at the University of Michigan have challenged a long-held belief that whitening of skeletal muscle in diabetes is harmful.

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.