Study suggests new source of kidneys for transplant

May 20, 2013, Wake Forest University Baptist Medical Center

Nearly 20 percent of kidneys that are recovered from deceased donors in the U.S. are refused for transplant due to factors ranging from scarring in small blood vessels of the kidney's filtering units to the organ going too long without blood or oxygen. But, what if instead of being discarded, these organs could be "recycled" to help solve the critical shortage of donor organs?

Researchers at Wake Forest Baptist Medical Center and colleagues, reporting in the journal Biomaterials, found that human kidneys discarded for transplant can potentially serve as a natural "scaffolding material" for manufacturing in the lab using techniques.

According to the authors, more than 2,600 donor kidneys are discarded each year in the U.S. "With about 100,000 people in the U.S. awaiting kidney transplants, it is devastating when an organ is donated but cannot be used," said Giuseppe Orlando, M.D., Ph.D., lead author, a Wake Forest Baptist and regenerative medicine researcher. "These discarded organs may represent an ideal platform for investigations aimed at manufacturing kidneys for transplant."

The research involved pumping a mild detergent through kidneys that were refused for transplant. The goal of the process, called decellularization, is to remove all cells – leaving only the organ structure or "," known in regenerative medicine terms as a . Ultimately, the patient's own cells could be placed in this scaffold, creating a customized organ that the patient theoretically would not reject.

In fact, an analysis of the decellularized organs revealed that antigens likely to cause an were removed in the cleaning process. "This finding has significant implications," said Orlando. "It indicates that transplantation of such customized kidneys could be performed without the need for anti-rejection therapy. In addition, these kidneys maintain their innate three-dimensional architecture, their basic biochemistry, as well as their vessel network system. When we tested their ability to be transplanted (in pigs), these kidneys were able to maintain blood pressure, suggesting a functional and resilient vasculature."

While the project is in its infancy, the idea represents a potential solution to the extreme shortage of . According to the authors, the probability in the U.S. of receiving a within five years of being added to the waiting list is less than 35 percent, and people age 60 or older who are placed on the waiting list only have a 50 percent chance of ever receiving a kidney.

The science of regenerative medicine has already had success in engineering skin, cartilage, bladders, urine tubes, trachea and in the lab that were successfully implanted in patients. Most of these structures were able to receive oxygen and nutrients from nearby tissues until they developed their own blood vessel supply. However, more complex organs such as the kidney, liver, heart and pancreas are larger with dense cellular networks and must have their own oxygen supply to survive. The need for a blood supply is why scientists are exploring the possibility of using donor organs and "seeding" them with a patient's own cells.

As the research continues, the scientists will need to assess whether discarded organs with certain defects can be used to benefit patients. For example, some kidneys are rejected because of fibrosis (scarring) in the tiny vessels throughout the organ. Can these organs be recycled? Orlando said that time will tell but that early clinical data suggests that fibrotic lesions are reversible and that the human body has the ability to remodel kidney fibrosis and restore normal anatomy.

Explore further: Lab-engineered kidney project reaches early milestone

Related Stories

Lab-engineered kidney project reaches early milestone

June 21, 2012
Regenerative medicine researchers at Wake Forest Baptist Medical Center have reached an early milestone in a long-term project that aims to build replacement kidneys in the lab to help solve the shortage of donor organs.

Researchers develop implantable, bioengineered rat kidney (w/ video)

April 14, 2013
Bioengineered rat kidneys developed by Massachusetts General Hospital (MGH) investigators successfully produced urine both in a laboratory apparatus and after being transplanted into living animals. In their report, receiving ...

Take a kidney transplant now or wait for a better one? Researchers create 'decision' tool

April 9, 2013
Johns Hopkins scientists have created a free, Web-based tool to help patients decide whether it's best to accept an immediately available, but less-than-ideal deceased donor kidney for transplant, or wait for a healthier ...

Disparities exist in kidney transplant timing

January 31, 2013
African-Americans and individuals without private health insurance are less likely than others to receive a kidney transplant before requiring dialysis, according to a study appearing in an upcoming issue of the Clinical ...

Education for kidney failure patients may improve chances living donor transplantation

March 21, 2013
Patients with kidney failure who have greater transplant knowledge and motivation are ultimately more likely to receive a kidney transplant from a living donor, according to a study appearing in an upcoming issue of the Clinical ...

Single gene variant in donors may affect survival of transplanted kidneys

October 11, 2012
A single genetic variant in kidney donors' cells may help determine whether their transplanted organs will survive long term, according to a study appearing in an upcoming issue of the Journal of the American Society of Nephrology ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.