Stem cell researchers move toward treatment for rare genetic nerve disease

May 10, 2013 by Shaun Mason, University of California, Los Angeles

(Medical Xpress)—UCLA researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have used induced pluripotent stem cells (iPSC) to advance disease-in-a-dish modeling of a rare genetic disorder, ataxia telangiectasia. Their discovery shows positive effects of drugs that may lead to effective new treatments for the neurodegenerative disease. iPSC are made from patient skin cells rather than from embryos and can become any type of cells in the laboratory.

Led by Dr. Peiyee Lee and Dr. Richard Gatti, researchers at the Eli and Edythe Broad Center of Regenerative Medicine and at UCLA have used induced pluripotent stem (iPS) cells to advance disease-in-a-dish modeling of a , (A-T).

Their discovery shows the positive effects of drugs that may lead to effective new treatments for the neurodegenerative disease. iPS cells are made from patients' , rather than from embryos, and they can become any type of cells, including , in the laboratory. The study appears online ahead of print in the journal Nature Communications.

People with A-T begin life with neurological deficits that become devastating through progressive loss of function in a part of the brain called the cerebellum, which leads to severe difficulty with movement and coordination. A-T patients also suffer frequent infections due to their and have an increased risk for cancer. The disease is caused by lost function in a gene, ATM, that normally repairs damaged DNA in the cells and preserves normal function.

Developing a human neural cell model to understand A-T's neurodegenerative process—and create a platform for testing new treatments—was critical because the disease presents differently in humans and laboratory animals. Scientists commonly use mouse models to study A-T, but mice with the disease do not experience the more debilitating effects that humans do. In mice with A-T, the cerebellum appears normal and they do not exhibit the obvious degeneration seen in the human brain.

Lee and colleagues used iPS cell–derived neural cells developed from skin cells of A-T patients with a specific type of genetic mutation to create a disease-in-a-dish model. In the laboratory, researchers were able to model the characteristics of A-T, such as the cell's lack of ATM protein and its inability to repair DNA damage. The model also allowed the researchers to identify potential new therapeutic drugs, called small molecule read-through (SMRT) compounds, that increase ATM protein activity and improve the model cells' ability to repair damaged DNA.

"A-T patients with no ATM activity have severe disease but patients with some ATM activity do much better," Lee said. "This makes our discovery promising, because even a small increase in the ATM activity induced by the SMRT drug can potentially translate to positive effects for patients, slowing disease progression and hopefully improving their quality of life."

These studies suggest that SMRT compounds may have positive effects on all other cell types in the body, potentially improving A-T patients' immune function and decreasing their susceptibility to cancer.

Additionally, the patient-specific iPS cell–derived neural cells in this study combined with the SMRT compounds can be an invaluable tool for understanding the development and progression of A-T. This iPS cell–neural cell A-T disease model also can be a platform to identify more potent SMRT drugs. The SMRT drugs identified using this model can potentially be applied to most other genetic diseases with the same type of mutations.

Explore further: Scientists develop 3-D stem cell culture technique to better understand Alzheimer's disease

Related Stories

Scientists develop 3-D stem cell culture technique to better understand Alzheimer's disease

April 2, 2013
A team of researchers at The New York Stem Cell Foundation Research Institute led by Scott Noggle, PhD, Director of the NYSCF Laboratory and the NYSCF – Charles Evans Senior Research Fellow for Alzheimer's Disease, and ...

Stem cells reverse disease in a model of Parkinson's disease

May 16, 2011
In a new study to be published in the Journal of Clinical Investigation, researchers compared the ability of cells derived from different types of human stem cell to reverse disease in a rat model of Parkinson disease and ...

Human brain cells developed in lab, grow in mice

May 8, 2013
A key type of human brain cell developed in the laboratory grows seamlessly when transplanted into the brains of mice, UC San Francisco researchers have discovered, raising hope that these cells might one day be used to treat ...

Scientists create personalized bone substitutes from skin cells

May 6, 2013
A team of New York Stem Cell Foundation (NYSCF) Research Institute scientists report today the generation of patient-specific bone substitutes from skin cells for repair of large bone defects. The study, led by Darja Marolt, ...

Recommended for you

New study offers insights on genetic indicators of COPD risk

January 16, 2018
Researchers have discovered that genetic variations in the anatomy of the lungs could serve as indicators to help identify people who have low, but stable, lung function early in life, and those who are particularly at risk ...

Previous influenza virus exposures enhance susceptibility in another influenza pandemic

January 16, 2018
While past exposure to influenza A viruses often builds immunity to similar, and sometimes different, strains of the virus, Canadian researchers are calling for more attention to exceptions to that rule.

Don't hold your nose and close your mouth when you sneeze, doctors warn

January 15, 2018
Pinching your nose while clamping your mouth shut to contain a forceful sneeze isn't a good idea, warn doctors in the journal BMJ Case Reports.

New antifungal provides hope in fight against superbugs

January 12, 2018
Microscopic yeast have been wreaking havoc in hospitals around the world—creeping into catheters, ventilator tubes, and IV lines—and causing deadly invasive infection. One culprit species, Candida auris, is resistant ...

Dengue takes low and slow approach to replication

January 11, 2018
A new study reveals how dengue virus manages to reproduce itself in an infected person without triggering the body's normal defenses. Duke researchers report that dengue pulls off this hoax by co-opting a specialized structure ...

Different strains of same bacteria trigger widely varying immune responses

January 11, 2018
Genetic differences between different strains of the same pathogenic bacterial species appear to result in widely varying immune system responses, according to new research published in PLOS Pathogens.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.