New regulator discovered for information transfer in the brain

June 20, 2013
Neuron with synaptic contacts. Credit: Biozentrum

The protein mSYD1 has a key function in transmitting information between neurons. This was recently discovered by the research group of Prof Peter Scheiffele at the Biozentrum, University of Basel. The findings of the investigations have been published in the scientific journal Neuron.

are the most important sites of between neurons. The functioning of our brain is based on the ability of the synapses to release neurotransmitter substances in a fraction of a second, so that neuronal signals can be rapidly propagated and integrated. Peter Scheiffele's team has now identified a new mechanism, which ensures that synaptic vesicles, the carrier of the transmitter substances, are concentrated at their designated place, thereby contributing to rapid .

mSYD1 as organizer of synaptic structures

The speed and precision of synaptic transmission is based on a highly complex protein apparatus in the synapse. A concentration of synaptic vesicles is found at the synaptic contact sites between neurons. When a nerve cell is activated, vesicles fuse with the edge of the synapse, the so-called active zone, and send neurotransmitters to the neighboring cells.

Peter Scheiffele's research group has now identified a previously unknown protein called mSYD1, which regulates the deposition of the vesicles at the active zone. In , in which no mSYD1 protein is present, synaptic contacts continue to be formed but the accumulation of the synaptic vesicles at the active zone is disrupted. This results in a significant reduction of synaptic transmission.

Inactive mSYD1 in autistic disorders

These findings provide important new insights into the mechanisms underlying the formation of functional . In patients with a belonging the autism spectrum, mSYD1 is one of a group of genes that are inactivated. In further investigations, the research group is now looking at how the inactivation of mSYD1 affects the behavior of mice, in order to gain insights into the fundamental neuronal defects associated with autism.

Explore further: Scientists discover key mechanism that boosts signalling function of neurons in the brain

More information: Wentzel, C. et al. (2013): mSYD1A, a Mammalian Synapse-Defective-1 Protein, Regulates Synaptogenic Signaling and Vesicle Docking, Neuron; Published online June 19, 2013. www.cell.com/neuron/abstract/S … -6273%2813%2900403-0

Related Stories

Scientists discover key mechanism that boosts signalling function of neurons in the brain

June 14, 2013
(Medical Xpress)—Locating a car that's blowing its horn in heavy traffic, channel-hopping between football and a thriller on TV without losing the plot, and not forgetting the start of a sentence by the time we have read ...

Scientists reverse disorder of neuronal circuits in autism

September 14, 2012
People with autism suffer from a pervasive developmental disorder of the brain that becomes evident in early childhood. Peter Scheiffele and Kaspar Vogt, Professors at the Biozentrum of the University of Basel, have identified ...

Efficient signal transmission at sensory system synapses

June 19, 2013
(Medical Xpress)—Neurophysiologist like to think of neurons as communicating with spikes. If that were the whole story, it might be possible to imagine spike codes which could then be used to estimate the flow of information, ...

Scientists discover the origin of a giant synapse

May 26, 2013
Humans and most mammals can determine the spatial origin of sounds with remarkable acuity. We use this ability all the time—crossing the street; locating an invisible ringing cell phone in a cluttered bedroom. To accomplish ...

Researchers clock the speed of brain signals

June 22, 2011
Two studies featuring research from Weill Cornell Medical College have uncovered surprising details about the complex process that leads to the flow of neurotransmitters between brain neurons -- a dance of chemical messages ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.