Defects in brain cell migration linked to mental retardation

June 21, 2013 by Michael C. Purdy, Washington University School of Medicine in St. Louis

(Medical Xpress)—A rare, inherited form of mental retardation has led scientists at Washington University School of Medicine in St. Louis to three important "travel agents" at work in the developing brain.

The agents—two individual proteins and a tightly bound cluster of four additional proteins—make it possible for to travel from the area where they are born to other where they will reside permanently and integrate into . Inhibiting any of these proteins in embryonic mice reduces the ability of neurons, which process and transmit information, to reach their final destinations and, presumably, to hardwire the brain.

"That kind of misplacement of brain cells is likely to seriously disrupt mental functions," said Azad Bonni, MD, PhD, the Edison Professor and chairman of the Department of Anatomy and Neurobiology. "This is just one of many ways that can go awry. To understand and develop treatments, we need to understand the many problems that can arise as the brain develops and its circuitry is established."

The results appeared June 19 in Neuron.

The new work began as an inquiry into PHF6, a gene that is mutated in patients with Börjeson-Forssman-Lehmann syndrome. This disorder causes mental retardation, and skeletal abnormalities. More than a decade ago, scientists identified a link between the condition and PHF6, but they did not know what the gene did in the brain.

Bonni's laboratory added to brain cells to track their development and movement in embryonic mice. Then the researchers inhibited PHF6 in some mice.

In normal mice, as expected, brain neurons migrated from the ventricular zone, where they were born, to the cortical plate, the precursor site of the . In the mature brain, the cerebral cortex is responsible for higher brain functions such as processing of , attention and decision-making. In mice whose brain cells lacked PHF6, many brain cells either stayed in the ventricular zone or only completed part of their journey.

In a series of additional experiments, Bonni's research group showed that the PHF6 protein operates in the nucleus of brain neurons, the command center of the cell. The scientists found that the PHF6 protein interacts with the PAF1 complex, a tightly bound cluster of four proteins that regulates programs of gene expression. This cluster then turns on a cell surface protein called neuroglycan C in brain neurons.

If any of these factors were inhibited, mouse brain neurons were unable to complete their normal migration. The researchers could "rescue" the neurons by restoring the missing protein, allowing the cells to complete their journey.

Disrupting proper brain structure and organization may not be the only problem caused by the PHF6 mutation. A portion of patients with Börjeson-Forssman-Lehmann syndrome also have epilepsy.

In tests in mice, Bonni's group found that the misplaced brain neurons were more excitable. This might result from changes in the activity of other proteins regulated by PHF6 and could make the brain more susceptible to seizures.

The researchers also learned that increasing the production of neuroglycan C in brain neurons overcomes the harmful effects of PHF6 loss on the migration of neurons.

"Cell surface proteins such as neuroglycan C are in good position to help cells move through their environment," Bonni said. "The protein's position on the cell surface of neurons also one day might make it an accessible target for drug treatments for developmental cognitive disorders."

Bonni suspects there might be additional problems in that develop without normal PHF6 and that errors in the gene might even impair function in neurons that make it to their final destinations. Further studies are underway.

Explore further: Protein identified that can disrupt embryonic brain development and neuron migration

More information: Zhang, C. et al. The X-linked intellectual disability protein PHF6 associates with the PAF1 complex and regulates neuronal migration in the mammalian brain, Neuron (2013),

Related Stories

Protein identified that can disrupt embryonic brain development and neuron migration

January 14, 2013
Interneurons – nerve cells that function as 'dimmers' – play an important role in the brain. Their formation and migration to the cerebral cortex during the embryonic stage of development is crucial to normal brain functioning. ...

Some brain cells are better virus fighters

March 7, 2013
(Medical Xpress)—Viruses often spread through the brain in patchwork patterns, infecting some cells but missing others. New research at Washington University School of Medicine in St. Louis helps explain why. The scientists ...

Common gene known to cause inherited autism now linked to specific behaviors

June 4, 2013
(Medical Xpress)—The genetic malady known as Fragile X syndrome is the most common cause of inherited autism and intellectual disability. Brain scientists know the gene defect that causes the syndrome and understand the ...

Serotonin mediates exercise-induced generation of new neurons

May 13, 2013
Mice that exercise in running wheels exhibit increased neurogenesis in the brain. Crucial to this process is serotonin signaling. These are the findings of a study by researchers at the Max Delbrück Center Berlin-Buch. Surprisingly, ...

Scientists coax brain to regenerate cells lost in Huntington's disease

June 6, 2013
Researchers have been able to mobilize the brain's native stem cells to replenish a type of neuron lost in Huntington's disease. In the study, which appears today in the journal Cell Stem Cell, the scientists were able to ...

Confirmation of repeated patterns of neurons indicates stereotypical organization throughout brain's cerebral cortex

May 11, 2012
Neurons are arranged in periodic patterns that repeat over large distances in two areas of the cerebral cortex, suggesting that the entire cerebral cortex has a stereotyped organization, reports a team of researchers led ...

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...


Adjust slider to filter visible comments by rank

Display comments: newest first

2.6 / 5 (5) Jun 21, 2013
It is interesting how a failure of migration causes brain damage, and the brain damage known as Republicanism seeks to halt immigration.
1 / 5 (3) Jun 22, 2013
Looks like there's hope for climate change denialism.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.