Balancing mitochondrial dynamics in Alzheimer's disease

June 6, 2013 by John Hewitt, Medical Xpress report
Healthy and damaged mitochondria in Alzheimer's disease. Credit:

(Medical Xpress)—Many diseases are multifactorial and can not be understood by simple molecular associations alone. Alzheimer's disease (AD)is associated with toxic transformations in two classes of protein,amyloid beta and tau, but they do not explain the full underlying pathology. On the cellular scale, much of the real-time morphological changes in neurons can be attributed to their underlying mitochondrial dynamics—namely fission, fusion, and the motions between these events. Last year, researchers from Harvard Medical School made the intriguing discovery that alterations in tau could lead to a doubling in the length of mitochondria. This week, they published a review article in Trends in Neuroscience, in which they seek to explain the primary features of AD in terms of mitochondrial dynamics.

Together with a from the Queensland Brain Institute, the Harvard researchers arrive at the conclusion that, like many other neurological diseases, AD is fundamentally an energy problem. While some proteins, like APOE-ɛ4 can predispose one to AD, point defects in individual proteins can not account for AD in the same way that a single alteration in leads to sickle cell disease. Attempts to assign casual relations to the complex interactions of tau or amyloid, with hundreds of other proteins inside neurons have frequently served to cloud, rather than simplify the AD story.

In years gone by, it was possible to publish a paper about how at certain sites on proteins, like tau, could lead to any number of downstream events. Tau is one of many proteins that control the assembly and stability of microtubules, that are among those compromised in AD. The problem now, is that we know tau comes in so many —it is a big family of different isoforms with different properties depending on how they are processed. As far as simple phosphorylation, tau has been found to have 79 potential sites, with at least 30 of them normally phosphorylated.

A welcome simplification to this situation of compounding molecular complexity, is that many pathways converge onto convenient pre-existing packets of time, space, and predictable molecular structure—the mitochondria. As opposed to massive cell-wide molecular accounting, describing a few sub-cellular morphological features may be a more tractable approach not only to capture disease etiology, but perhaps to treat it.

To this end, the researchers apply existing knowledge regarding some of the molecular players in AD, to a few of the well-established control points in mitochondrial dynamics. State transitions between fission and fusion are, at the moment at least, characterized by only a small handful of proteins. This simple formula might be prescribed as the following: molecular pathway locally effects the organelle dynamics, then, the dynamic behavior of organelle accounts for the disease. The imposition of this middleman can potentially simplify much of the vast body of fact and conjecture associated with the disease.

The elongation of mitochondria by tau can be caused by increasing fusion, decreasing fission, or both. One function of tau is to stabilize F-actin networks which prevents a key fission from ever reaching the mitochondria. Elongated mitochondria do not necessarily cause AD. In fact, amyloid beta, which is concentrated inside mitochondria, has been shown to cause increased fission and decreased fusion. When the balance between fission and fusion is pushed too far in either direction, the result is bad news for neurons. If there are defects in the transport of mitochondria, as seems to be the case in many neurological diseases, their redistribution is unable to compensate for this loss of balance.

Specific disease-associated isoforms and phosphorylation states of tau can lead to AD through the loss of mitochondria in axons. In studies of AD tissue, mitochondria have been found to be preferentially redistributed to the soma. These selective localizations can take place quickly, and are therefore difficult to quantify except by live videomicroscopy. In synapses, the mitochondria have been observed to be longer lived, and to play a more critical role in calcium regulation then those elsewhere. Disruption in the normal handling of calcium has been attributed to many aspects of AD, particularly synaptic pathology.

The canonical dogma that action potentials lead to vesicle fusion and transmitter release exclusively through the entry of extracellular calcium has recently been enhanced with the understanding that mitochondria contribute significantly to the synaptic calcium cycle. While mitochondria clearly do not depolarize as rapidly as whole spiking cells,(generally when mitochondria are depolarized there is some problem) their calcium transporters operate quickly to mop up and redistribute calcium. To say that mitochondria might single-handedly initiate vesicle fusion, or for that matter minipotentials or full-blown spikes, would await future experimental corroboration.

Countless scores of papers over the years have attempted to make sense of the myriad synaptic pathways underlying memory and LTP. They might be better understood when mitochondria are viewed as the primary authors of synaptic vesicle release probability, and by implication, "spontaneous" release (vesicle fusion in the absence of a spike). As in disease states, specific pathways, structures and organelles have significant roles to play in many aspects of brain function—but causally relating the and dynamics of to these phenomena now gives the broadest interpretive power.

Explore further: Mitochondrial dynamics in neurons: Whats all the fuss about?

More information: Why size matters – balancing mitochondrial dynamics in Alzheimer's disease, Authors: Brian DuBoff, Mel Feany, Jürgen Götz, Trends in Neurosciences, Volume 36, Issue 6, 325-335, 12 April 2013. DOI: 10.1016/j.tins.2013.03.002

Once perceived as solitary structures, mitochondria are now recognized as highly dynamic, interconnected organelles. The tight control of their fusion and fission, a process termed 'mitochondrial dynamics', is crucial for neurons, given their unique architecture and special energy and calcium-buffering requirements at the synapse. Interestingly, in Alzheimer's disease (AD), a condition initiated at the synapse, mitochondrial dynamics are severely impaired. Of the two proteins implicated in AD pathogenesis, amyloid-β (Aβ) and TAU, only the impact of Aβ on mitochondrial dynamics has been studied in detail. We highlight recent findings that TAU exerts a determinative effect in the regulation of mitochondrial dynamics, and therefore neuronal function. In this process, the GTPase DRP1 has emerged as a key target of both Aβ and TAU.

Related Stories

Mitochondrial dynamics in neurons: Whats all the fuss about?

April 3, 2013
(Medical Xpress)—In the epic series Star Wars, the mysterious energy field known simply as, the Force, was communicated by microscopic endosymbionts known as midichlorians. Their real world counterparts, the mitochondria, ...

Controlling mood through the motions of mitochondria

May 23, 2013
(Medical Xpress)—Regulating the distribution of power in neurons is done by a system that makes the national electric grid look simple by comparison. Each neuron has several thousand mitochondria confined into narrow neuritic ...

For mitochondria, bigger may not be better

August 23, 2012
Goldilocks was on to something when she preferred everything "just right." Harvard Medical School researchers have found that when it comes to the length of mitochondria, the power-producing organelles, applying the fairy ...

Two defective proteins conspire to impair the nerve cell's 'powerhouse' in Alzheimer's disease

May 13, 2011
Two proteins that are abnormally modified in the brains of patients with Alzheimer disease collude, resulting in ill effects on the crucial energy centers of brain cells, according to new findings published online in Neurobiology ...

Diabetic kidney failure follows a 'ROCK'y road

February 7, 2012
A protein kinase known as ROCK1 can exacerbate an important process called fission in the mitochondria, the power plants of cells, leading to diabetic kidney disease, said researchers from Baylor College of Medicine in a ...

Vesicle-attached ATP generator, not mitochondria, powers axonal transport

March 25, 2013
(Medical Xpress)—Neurons have developed elaborate mechanisms for transporting critical components, like transmitter-laden vesicles, down their axons to the synaptic terminations. An axon in a blue whale may be several meters ...

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.