Doubts cast on the molecular mechanism of 'read-through' drug PTC124/Ataluren

June 25, 2013

A drug developed to treat genetic diseases such as Duchenne muscular dystrophy and cystic fibrosis may need a radical rethink. In a new study published on 25 June in the open access journal PLOS Biology, researchers question the mechanistic basis of the drug called PTC124 (also known as Ataluren), casting doubt as to whether it has the molecular effects that are claimed for it. This may have implications for its effectiveness in treating genetic diseases.

An estimated 10% of all human genetic diseases are caused by nonsense mutations. These cause ribosomes to stop dead in their tracks, leaving the proteins that they are making incomplete, often with devastating effects. For example, a subset of cases of are caused by in the gene encoding CFTR, a transmembrane channel. The vision behind PTC124, one of a class of so-called "read-through" drugs, was to trick the ribosome into ignoring these premature , so that enough full-length protein could be made to substantially improve the lot of patients. PTC124 was initially shown to be effective in promoting read-through of mutations that cause Duchenne muscular dystrophy, a severe, lethal and relatively . Subsequently, however, despite some positive results, reports of PTC124's efficacy for this and other genetic diseases have been mixed, and people in the field have started to question the efficacy of the drug.

In the new study, Stuart McElroy, Irwin McLean and colleagues at the University of Dundee question the validity of the elegant screening experiment initially used to identify PTC124. This was based on a system whereby an effective read-through drug would cause the ribosomes to make a "reporter" enzyme named luciferase; this enzyme was originally isolated from fireflies, and can be detected by its ability to produce light. McElroy and colleagues confirmed previous studies that suggested PTC124 instead deceives the drug via a direct effect on the luciferase enzyme, rather than by causing read-through. They then showed that this doesn't occur when they used alternative reporter enzymes. But does PTC124 nevertheless cause translational read-through? The answer, apparently, is no; the authors went on to systematically test the effects of PTC124 on the read-through of all possible nonsense mutation contexts and on a range of scenarios. In each case, PTC124 failed to show any effect. The originally reported effects are therefore likely to have occurred by some mechanism other than read-through.

It should be noted that McElroy and colleagues only tested cells (not intact animals), that they only look at read-through activity, and that there are several publications suggesting clinical efficacy of PTC124 (particularly for cystic fibrosis) that are not challenged by this study. It is well known that some drugs may act by means other than originally intended but nevertheless remain effective. However, the study does raise questions about the drug's mechanism and efficacy for genetic diseases, indicating that in instances where PTC124 does have beneficial effects, this may be down to serendipity rather than the purported mechanism of translational read-through.

Explore further: Biologists achieve repair and read-through of stop mutations responsible for Usher syndrome

More information: McElroy SP, Nomura T, Torrie LS, Warbrick E, Gartner U, et al. (2013) A Lack of Premature Termination Codon Read-Through Efficacy of PTC124 (Ataluren) in a Diverse Array of Reporter Assays. PLoS Biol 11(6): e1001593. doi:10.1371/journal.pbio.1001593

Related Stories

Biologists achieve repair and read-through of stop mutations responsible for Usher syndrome

December 4, 2012
After years of basic research, scientists at Johannes Gutenberg University Mainz (JGU) are increasingly able to understand the mechanisms underlying the human Usher syndrome and are coming ever closer to finding a successful ...

Treatment approach to human Usher syndrome: Small molecules ignore stop signals

July 1, 2011
Usher syndrome is the most common form of combined congenital deaf-blindness in humans and affects 1 in 6,000 of the population. It is a recessive inherited disease that is both clinically and genetically heterogeneous. In ...

New compound holds promise for treating Duchenne MD, other inherited diseases

June 27, 2012
Scientists at UCLA have identified a new compound that could treat certain types of genetic disorders in muscles. It is a big first step in what they hope will lead to human clinical trials for Duchenne muscular dystrophy.

Recommended for you

Mind-body therapies immediately reduce unmanageable pain in hospital patients

July 25, 2017
Mindfulness training and hypnotic suggestion significantly reduced acute pain experienced by hospital patients, according to a new study published in the Journal of General Internal Medicine.

Study suggests ending opioid epidemic will take years

July 20, 2017
The question of how to stem the nation's opioid epidemic now has a major detailed response. A new study chaired by University of Virginia School of Law Professor Richard Bonnie provides extensive recommendations for curbing ...

Team-based model reduces prescription opioid use among patients with chronic pain by 40 percent

July 17, 2017
A new, team-based, primary care model is decreasing prescription opioid use among patients with chronic pain by 40 percent, according to a new study out of Boston Medical Center's Grayken Center for Addiction Medicine, which ...

Private clinics' peddling of unproven stem cell treatments is unsafe and unethical

July 7, 2017
Stem cell science is an area of medical research that continues to offer great promise. But as this week's paper in Science Translational Medicine highlights, a growing number of clinics around the globe, including in Australia, ...

Popular heartburn drugs linked to higher death risk

July 4, 2017
Popular heartburn drugs called proton pump inhibitors (PPIs) have been linked to a variety of health problems, including serious kidney damage, bone fractures and dementia. Now, a new study from Washington University School ...

Most reproductive-age women using opioids also use another substance

June 30, 2017
The majority of reproductive-age and pregnant women who use opioids for non-medical purposes also use at least one other substance, ranging from nicotine or alcohol to cocaine, according to a University of Pittsburgh Graduate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.