Researchers find people learn to use brain-computer interfaces the same way as other motor skills

June 11, 2013 by Bob Yirka, Medical Xpress report
Brain computer interface. Credit: Glasgow University

(Medical Xpress)—Researchers at the University of Washington have found that people who learn to control an object on a computer screen using only their thoughts, do so in ways that are very similar to the ways people learn other motor skills. In their paper published in Proceedings of the National Academy of Sciences, the researchers describe how they monitored data from brain probes in epilepsy patients to learn more about how the human brain learns to control machines with thoughts.

For several years scientists have known that people are able to control devices using only their thoughts—probes listen for and react to discernible patterns. What's not been clear, however, is how the brain responds to such devices.

To find out more, the research team worked with another team that was investigating how epilepsy works in the . Seven volunteers had already had brain probes implanted for long term study. Each of the volunteers was asked to control the path of a cursor as it moved from the left side of a computer screen to the right. As they did so the researchers recorded brain wave activity throughout the brain, initially focusing on data from the electrodes that exhibited the most increase in . As the patient controlled the cursor, the researchers could see that many lit up, indicating a large neural network was involved in the learning process. That was expected. What was new was that as the patients began to master mind-controlling the cursor, the entire network began to quiet—neural network activity decreased just as occurs when a person is learning something new that requires motor skills, such as riding a bicycle or playing guitar. This suggests that people learn to control external in much the same way as they learn how to do things with their bodies.

This image shows the changes that took place in the brain for all patients participating in the study using a brain-computer interface. Changes in activity were distributed widely throughout the brain. Credit: Jeremiah Wander, U. of Washington

There is one very large difference between the two types of learning processes, of course, and that is the type of feedback involved. When people learn to ride a skateboard, for example, they can feel what is happening. They use data coming in from their limbs as well as from their eyes. Moving a cursor across a screen or a wheelchair across a room using only thoughts means the person is relying on visual data alone to make adjustments. Still, knowing that people are learning in ways similar to other activities should be of use to researchers looking to create new devices for people to control with their minds.

Explore further: Real-time brain feedback can help people overcome anxiety

More information: Distributed cortical adaptation during learning of a brain–computer interface task, PNAS, Published online before print June 10, 2013, doi: 10.1073/pnas.1221127110

Abstract
The majority of subjects who attempt to learn control of a brain–computer interface (BCI) can do so with adequate training. Much like when one learns to type or ride a bicycle, BCI users report transitioning from a deliberate, cognitively focused mindset to near automatic control as training progresses. What are the neural correlates of this process of BCI skill acquisition? Seven subjects were implanted with electrocorticography (ECoG) electrodes and had multiple opportunities to practice a 1D BCI task. As subjects became proficient, strong initial task-related activation was followed by lessening of activation in prefrontal cortex, premotor cortex, and posterior parietal cortex, areas that have previously been implicated in the cognitive phase of motor sequence learning and abstract task learning. These results demonstrate that, although the use of a BCI only requires modulation of a local population of neurons, a distributed network of cortical areas is involved in the acquisition of BCI proficiency.

Press release

Related Stories

Real-time brain feedback can help people overcome anxiety

May 9, 2013
(Medical Xpress)—People provided with a real-time readout of activity in specific regions of their brains can learn to control that activity and lessen their anxiety, according to new findings published online in the journal ...

Helicopter takes to the skies with the power of thought (w/ Video)

June 4, 2013
A remote controlled helicopter has been flown through a series of hoops around a college gymnasium in Minnesota. It sounds like your everyday student project; however, there is one caveat… the helicopter was controlled ...

Control the cursor with power of thought

April 7, 2011
The act of mind reading is something usually reserved for science-fiction movies but researchers in America have used a technique, usually associated with identifying epilepsy, for the first time to show that a computer can ...

Early brain responses to words predict developmental outcomes in children with autism

May 29, 2013
The pattern of brain responses to words in 2-year-old children with autism spectrum disorder predicted the youngsters' linguistic, cognitive and adaptive skills at ages 4 and 6, according to a new study.

Computers may help patients restore movement after stroke

July 24, 2012
(Medical Xpress) -- New research suggests that patients whose mobility has been limited by stroke may one day use their imagination and a computer link to move their hands.

Neuroscience shows why not everyone learns from their mistakes

February 27, 2013
(Medical Xpress)—Some people do not learn from their mistakes because of the way their brain works, according to research led by an academic at Goldsmiths, University of London.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.