A shot in the arm for old antibiotics: Silver boosts antibiotics

June 19, 2013
Silver unlocks new potential for four common antibiotics, allowing them to kill bacteria that previously withstood their effects. Credit: Cristobal R. Guerra

Slipping bacteria some silver could give old antibiotics new life, scientists at the Wyss Institute for Biologically Inspired Engineering at Harvard University reported June 19 in Science Translational Medicine.

Treating bacteria with a silver-containing compound boosted the efficacy of a broad range of widely used antibiotics and helped them stop otherwise lethal infections in mice. It helped make an antibiotic-resistant sensitive to antibiotics again. And it expanded the power of an antibiotic called vancomycin that is usually only effective in killing pathogens called , such as and Strep. Silver allowed vancomycin for the first time to penetrate and kill Gram-negative bacteria, a group that includes microbes that can cause food poisoning and dangerous hospital-acquired infections.

Silver also proved useful for two types of stubborn infections that usually require repeated rounds of and multiple visits to the clinic: dormant bacteria that lie low during antibiotic treatment and rebound to cause recurrent infections, and microbial slime layers called biofilms that coat catheters and prosthetic joints.

"The results suggest that silver could be incredibly valuable as an adjunct to existing antibiotic treatments," said Jim Collins, Ph.D., a pioneer of synthetic biology and Core Faculty member at the Wyss Institute, who is also the William F. Warren Distinguished Professor at Boston University, where he leads the Center of Synthetic Biology.

In recent years more disease-causing bacteria have grown resistant to common antibiotics, with serious public health consequences. Yet drug companies have struggled for years to develop new types of antibiotics that target these tough bacteria. That has led scientists to re-examine older methods that were used to fight infection well before penicillin use took off in the 1940s. Silver treatment, which has been used since antiquity to prevent and heal infections, is one of them.

Despite silver's long history of use in the clinic, no one understood fully how it killed bacteria. To find out, Ruben Morones-Ramirez, Ph.D., a postdoctoral fellow at the Wyss Institute who left recently to become a professor at Universidad Autónoma de Nuevo Leon in Mexico, treated normal and mutant strains of E. coli bacteria with a silver compound. Then he observed them under the electron microscope and ran a series of biochemical tests.

He found that silver compounds cause bacteria to produce more reactive oxygen species – chemically reactive molecules that damage the bacterial cell's DNA and enzymes, as well as the membrane that encloses the cell. Silver also made the bacteria's cell membrane leakier.

Although silver was used alone as a therapy in the past, the scientists suspected that both changes might make cells more vulnerable to conventional antibiotics—and they did. A small amount of silver made E. coli bacteria between 10 and 1000 times more sensitive to three commonly used antibiotics: gentamycin, ofloxacin, and ampicillin.

"If you know the mechanism, you can have much more success making combinatorial therapies," Morones-Ramirez said.

In mice, silver also helped antibiotics fight E. coli-induced urinary-tract infections. It made a previously impervious strain of E. coli sensitive to the antibiotic tetracycline.

And it allowed to save the lives of 90 percent of mice with life-threatening cases of peritonitis—inflammation caused by infections of the abdominal space surrounding the internal organs. Without silver, only 10 percent of the mice survived.

The scientists also did a series of toxicity studies, showing that the doses of silver needed to help kill were far below what could harm the mice. Nor did they harm cultured human cells, suggesting that oral and injectable silver could be safe for humans as well.

"Doctors desperately need new strategies to fight antibiotic-resistant infections, and Jim and his team have uncovered one that's incredibly versatile, and that could be put to use quickly in humans," said Don Ingber, M.D., Ph.D., Wyss Institute Founding Director.

"We're keen to explore how smart drug-delivery nanotechnologies being developed at the Wyss could help deliver effective but nontoxic levels of to sites of infection," Collins said.

Explore further: Viruses in gut confer antibiotic resistance to bacteria

More information: "Silver Enhances Antibiotic Activity Against Gram-Negative Bacteria," by J.R. Morones-Ramirez et al. Science Translational Medicine, 2013.

Related Stories

Viruses in gut confer antibiotic resistance to bacteria

June 10, 2013
Bacteria in the gut that are under attack by antibiotics have allies no one had anticipated, a team of Wyss Institute scientists has found. Gut viruses that usually commandeer the bacteria, it turns out, enable them to survive ...

Getting better without antibiotics

May 30, 2013
Given the option, many women with symptoms of urinary tract infections are choosing to avoid antibiotics and give their bodies a chance to heal naturally, finds research in BioMed Central's open access journal BMC Family ...

Bacterial contamination rife in retail store ground turkey

May 3, 2013
(HealthDay)—Ground turkey from retail stores is often contaminated with fecal bacteria, and in many cases the bacteria are resistant to antibiotics, according to a report published in the June issue of Consumer Reports.

Recommended for you

Study suggests ending opioid epidemic will take years

July 20, 2017
The question of how to stem the nation's opioid epidemic now has a major detailed response. A new study chaired by University of Virginia School of Law Professor Richard Bonnie provides extensive recommendations for curbing ...

Team-based model reduces prescription opioid use among patients with chronic pain by 40 percent

July 17, 2017
A new, team-based, primary care model is decreasing prescription opioid use among patients with chronic pain by 40 percent, according to a new study out of Boston Medical Center's Grayken Center for Addiction Medicine, which ...

Private clinics' peddling of unproven stem cell treatments is unsafe and unethical

July 7, 2017
Stem cell science is an area of medical research that continues to offer great promise. But as this week's paper in Science Translational Medicine highlights, a growing number of clinics around the globe, including in Australia, ...

Popular heartburn drugs linked to higher death risk

July 4, 2017
Popular heartburn drugs called proton pump inhibitors (PPIs) have been linked to a variety of health problems, including serious kidney damage, bone fractures and dementia. Now, a new study from Washington University School ...

Most reproductive-age women using opioids also use another substance

June 30, 2017
The majority of reproductive-age and pregnant women who use opioids for non-medical purposes also use at least one other substance, ranging from nicotine or alcohol to cocaine, according to a University of Pittsburgh Graduate ...

At-risk chronic pain patients taper opioids successfully with psychological tools

June 28, 2017
Psychological support and new coping skills are helping patients at high risk of developing chronic pain and long-term, high-dose opioid use taper their opioids and rebuild their lives with activities that are meaningful ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.