Team discovers an unknown channel in the heart could illuminate unsolved cases of arrhythmia

June 11, 2013, Tel Aviv University
Team discovers an unknown channel in the heart could illuminate unsolved cases of arrhythmia

The heart's regular rhythm is crucial to the delivery of oxygenated blood and nutrients to all the organs of the body. It is regulated by a bundle of cells called "the pacemaker," which use electrical signals to set the pace of the heart. Dysfunction in this mechanism can lead to an irregular heartbeat, known as arrhythmia, and often necessitates the implantation of an artificial pacemaker.

Previously, scientists found that many cases of inherited arrhythmias originating in the pacemaker could be attributed to functional defects in the channels responsible for the flow of sodium and calcium. Now Prof. Bernard Attali of Tel Aviv University's Sackler Faculty of Medicine and his fellow researchers have discovered a previously unidentified potassium channel in the which helps to regulate the heartbeat. He hypothesizes that some cases of unexplained arrhythmia could be traced back to irregularities in this channel.

Developing therapies to target this potassium channel could be a significant step towards circumventing artificial pacemakers in favor of biological options, says Prof. Attali. This research has been reported in the journal PNAS.

A cellular heart model

To further investigate the workings of the biological pacemaker, Prof. Attali and his fellow researchers turned to isolated from human subjects. Once coaxed into differentiating into , these cells began to beat automatically, like a small human heart.

While observing and recording the cells' electrical activity, researchers discovered the existence of a new channel in the pacemaker. Facilitating the flow of potassium from the , this channel triggers the repolarization of the cells—returning the cell membrane from a "beating" to a "resting" state—and automatically renews or "restarts" the cycling of the heart.

Since discovering this channel in the , the researchers have shown that the channel exists in the adult heart as well. This finding deepens medicine's understanding of the heart's pacemaker function, which has been the subject of scientific research for over a century.

Screening for mutations

The next step is to conduct screening for mutations in the gene encoding the potassium channel, a process already underway at the TAU-affiliated Sheba Medical Center. "We would like to understand if there are genetic diseases linked to this channel," such as a previously unknown cause of arrhythmia, explains Prof. Attali. If a mutation is found, researchers can begin the hunt for drug compounds, which target this channel. The ultimate goal, he adds, is to be able to treat heart arrhythmias biologically by altering the properties of the pacemaker bundle, rather than relying on a man-made electric pacemaker.

One possible solution could be transplanting healthy pacemaker cells—developed from a patient's own stem cells—to replace dysfunctional cells and restore proper heart rhythm. This method would circumvent a common risk of the body rejecting a mechanical transplant.

Explore further: Ordinary heart cells become 'biological pacemakers' with injection of a single gene

Related Stories

Ordinary heart cells become 'biological pacemakers' with injection of a single gene

December 16, 2012
Cedars-Sinai Heart Institute researchers have reprogrammed ordinary heart cells to become exact replicas of highly specialized pacemaker cells by injecting a single gene (Tbx18)–a major step forward in the decade-long search ...

Wireless pacemaker shows promise in early study

May 9, 2013
(HealthDay)—Scientists report positive results in early testing of a wireless pacemaker that's placed in the heart instead of being connected to it via wires from the upper chest.

Rhythm is it: Ion channels ensure the heart keeps time

September 9, 2011
The heartbeat is the result of rhythmic contractions of the heart muscle, which are in turn regulated by electrical signals called action potentials. Action potentials result from the controlled flow of ions into heart muscle ...

Sea squirt pacemaker gives new insight into evolution of the human heart

August 2, 2011
An international team of molecular scientists have discovered that star ascidians, also known as sea squirts, have pacemaker cells similar to that of the human heart. The research, published in the JEZ A: Ecological Genetics ...

Cause of heart arrhythmia discovered using X-rays at CLS

February 22, 2013
Using powerful X-rays at the Canadian Light Source synchrotron, scientists have reconstructed the scenario of heart arrhythmia in action, making critical progress towards preventing deadly conditions and saving lives.

Recommended for you

Starting periods before age of 12 linked to heightened risk of heart disease and stroke

January 15, 2018
Starting periods early—before the age of 12—is linked to a heightened risk of heart disease and stroke in later life, suggests an analysis of data from the UK Biobank study, published online in the journal Heart.

'Decorated' stem cells could offer targeted heart repair

January 10, 2018
Although cardiac stem cell therapy is a promising treatment for heart attack patients, directing the cells to the site of an injury - and getting them to stay there - remains challenging. In a new pilot study using an animal ...

Exercise is good for the heart, high blood pressure is bad—researchers find out why

January 10, 2018
When the heart is put under stress during exercise, it is considered healthy. Yet stress due to high blood pressure is bad for the heart. Why? And is this always the case? Researchers of the German Centre for Cardiovascular ...

Two simple tests could help to pinpoint cause of stroke

January 10, 2018
Detecting the cause of the deadliest form of stroke could be improved by a simple blood test added alongside a routine brain scan, research suggests.

Heart-muscle patches made with human cells improve heart attack recovery

January 10, 2018
Large, human cardiac-muscle patches created in the lab have been tested, for the first time, on large animals in a heart attack model. This clinically relevant approach showed that the patches significantly improved recovery ...

Place of residence linked to heart failure risk

January 9, 2018
Location. Location. Location.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.