Virus combination effective against deadly brain tumor, Moffitt Cancer Center study shows

June 20, 2013

A combination of the myxoma virus and the immune suppressant rapamycin can kill glioblastoma multiforme, the most common and deadliest malignant brain tumor, according to Moffitt Cancer Center research. Peter A. Forsyth, M.D., of Moffitt's Neuro-Oncology Program, says the combination has been shown to infect and kill both brain cancer stem cells and differentiated compartments of glioblastoma multiforme.

The finding means that barriers to treating the disease, such as resistance to the drug temozolomide, may be overcome. The study, by Forsyth and colleagues in Canada, Texas and Florida, appeared in a recent issue of Neuro-Oncology.

"Although temozolomide improves survival for patients with , is a significant obstacle," said Forsyth, the study lead author. "Oncolytic viruses that infect and break down offer promising possibilities for overcoming resistance to targeted therapies."

The authors note that oncolytic viruses have the potential to provoke a multipronged attack on a tumor, with the potential to kill cancer cells directly through viral infection and possibly through inducing the immune system to attack the tumor. The multipronged approach might get around some of the classical that have plagued both targeted therapies and conventional chemotherapies.

Several oncolytic viruses, both alone or in combination with small , have been tested and show promise for . However, most have not been effective in killing cancer cells. Two likely obstacles may be the patient's own anti-viral immune response and limited virus distribution.

"Based on our previous work with myxoma virus, we considered it to be an excellent oncolytic virus candidate against brain cancer stem cells," explained Forsyth.

The researchers found that brain cancer stem cells were susceptible to myxoma virus in the laboratory cultures (in vitro) and in animal models (in vivo), including in temozolomide-resistant cell lines.

"We also found that myxoma virus with rapamycin is a potentially useful combination. The idea that cancer cells can be killed by a harmless virus is an exciting prospect for therapy," Forsyth said.

The precise mechanism rapamycin uses to enhance infection in stem cells is unknown, and the combination therapy does not result in cures. However, researchers are investigating other drugs that may improve the effectiveness of myxoma virus when used in combination, and they are evaluating the use of other strains of myxoma virus that might be more effective.

"Although our study adds myxoma virus to the list of oncolytic viruses capable of infecting and killing these cells, which strengthens its candidacy for clinical application, our model will need clinical application to determine its safety for patients," concluded the authors. "We expect that intracranial injections of myxoma virus will be safe based on our extensive preclinical work and the demonstrated safety of other oncolytic viruses in clinical trials."

Explore further: Scientists put a pox on dog cancer

More information: neuro-oncology.oxfordjournals. … b4-9037-92619fcad045

Related Stories

Scientists put a pox on dog cancer

September 10, 2012
Researchers report that myxoma – a pox virus that afflicts rabbits but not humans, dogs or any other vertebrates so far studied – infects several different types of canine cancer cells in cell culture while sparing healthy ...

Patient's own immune cells may blunt viral therapy for brain cancer

November 25, 2012
Doctors now use cancer-killing viruses to treat some patients with lethal, fast-growing brain tumors. Clinical trials show that these therapeutic viruses are safe but less effective than expected.

New oncolytic virus shows improved effectiveness in preclinical testing

October 27, 2011
A new fourth-generation oncolytic virus designed to both kill cancer cells and inhibit blood-vessel growth has shown greater effectiveness than earlier versions when tested in animal models of human brain cancer.

Cancer cells send out the alarm on tumor-killing virus

March 15, 2012
Brain-tumor cells that are infected with a cancer-killing virus release a protein "alarm bell" that warns other tumor cells of the impending infection and enables them to mount a defense against the virus, according to a ...

Fast-acting virus targets melanoma in mice

June 17, 2013
(Medical Xpress)—Yale researchers eradicated most melanoma tumors by exposing them to a fast-acting virus, they report in the June 15 edition of the Journal of Virology.

Using math to kill cancer cells

June 14, 2013
Here's a good reason to pay attention in math class. Nature Communications has published a paper from Ottawa researchers today, outlining how advanced mathematical modelling can be used in the fight against cancer. The technique ...

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.