New 3D hair follicle model to accelerate cure for baldness

July 19, 2013
New 3D Hair Follicle Model to Accelerate Cure for Baldness
A simplified diagram of a real hair follicle structure.

Hair loss is a common disorder that affects many men and women due to aging or medical conditions. Current FDA-approved drugs can minimize further hair loss but are unable to regrow new hair. The Institute of Bioengineering and Nanotechnology (IBN) has recently engineered a new hair follicle model that could help discover new drugs for hair regeneration1.

IBN Executive Director Professor Jackie Y. Ying said, "We have applied our cell and expertise to create a hair follicle-like structure that is very similar to the native hair follicle. This model allows us to better understand the mechanisms that control the development and growth of hair follicles. We hope that our invention would lead to novel ways to treat hair loss, which affects millions of people worldwide."

The hair follicle is a regenerating organ that produces a new hair shaft during each growth cycle. This hair growth cycle is controlled by interactions between two main cell types: epithelial cells, which surround the hair shaft, and dermal papilla cells, which are at the base of the follicle bulb. A three-dimensional (3D) hair follicle model would therefore be useful for studying these to identify new treatments for male and female pattern baldness.

By applying a patented microfiber fabrication technology2 for engineering different cell types in three dimensions, the IBN research team was able to fabricate a 3D hair follicle model that mimics the size and cell arrangement of a real hair follicle. They achieved this by combining two types of , namely, dermal papilla cells and keratinocytes, an type, within a translucent fibrous matrix.

IBN Team Leader and Principal Research Scientist Dr Andrew Wan elaborated, "Measuring the diameter of a strand of hair, our hair follicle-like structure exhibits similar as real hair follicles. In our model, the hair cells are implanted into very fine and transparent fibers, which can be easily examined under the microscope unlike conventional models, making them ideal for drug testing applications."

The IBN researchers found that the cells in their -like structures switched on genes that are usually active during the hair growth stage, and when transplanted into mice, they could grow further into natural-looking hair structures.

If commercialized, this technology could be used by pharmaceutical companies in the drug discovery stage to screen potential promoters or inhibitors of hair formation. Consumer care companies would also be interested in this technology platform as it would allow them to screen the effectiveness of active ingredients in personal care products for hair growth.

Explore further: Growth factor responsible for triggering hair follicle generation during wound healing identified

Related Stories

Growth factor responsible for triggering hair follicle generation during wound healing identified

June 2, 2013
Researchers in the Perelman School of Medicine at the University of Pennsylvania have determined the role of a key growth factor, found in skin cells of limited quantities in humans, which helps hair follicles form and regenerate ...

New research provides clues on why hair turns gray

June 14, 2011
A new study by researchers at NYU Langone Medical Center has shown that, for the first time, Wnt signaling, already known to control many biological processes, between hair follicles and melanocyte stem cells can dictate ...

Bioluminescence imaging lights up stem cell therapy for hair growth

June 11, 2012
Finding a way to restore hair growth after substantial hair loss is something of an obsession worldwide. Investigators at the Society of Nuclear Medicine's 2012 Annual Meeting presented how stem cell research for the development ...

Research identifies inhibitor causing male pattern baldness and target for hair-loss treatments

March 21, 2012
Researchers from the Perelman School of Medicine at the University of Pennsylvania have identified an abnormal amount a protein called Prostaglandin D2 in the bald scalp of men with male pattern baldness, a discovery that ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.