Researcher finds way to convert blood cells into autoimmune disease treatment

July 18, 2013 by Elizabeth K. Gardner, Purdue University

(Medical Xpress)—Cells from one's own blood could be converted into a treatment for autoimmune diseases, like rheumatoid arthritis and Crohn's disease, based on the discovery of a Purdue University researcher.

Chang Kim, a professor of comparative , has created a way to direct the differentiation of T-cells, a white blood cell that is a key player in the body's immune system. The method uses naïve T-cells, from which all T-cells develop, and induces them to become suppressive T-cells that block the development of painful inflammation associated with autoimmune diseases.

Naïve T-cells can be gathered from a patient's blood, treated and then re-injected, said Kim, who also is a university faculty scholar and member of Purdue's Center for Cancer Research and Weldon School of Biomedical Engineering.

"These cells are being directed to become a type of cell that is already present in our bodies, where a between inflammatory T-cells and suppressive T-cells is maintained," he said. "We are just tipping the scales in favor of suppressive T-cells to reduce inflammation. Because of this there are none of the associated with many immune-suppressive drugs. In addition, cells from one's own body aren't rejected and remain in the body much longer. Instead of taking a pill every day, this could lead to a treatment administered, for example, every six months."

Autoimmune diseases occur when the immune system attacks one's own body instead of fending off infection from viruses, bacteria and other foreign cells. An overactive immune system sends T-cells to healthy tissue and organs where they cause inflammation and .

Suppressive T-cells migrate to areas of inflammation and suppress the T-cells there without significantly lowering the number of T-cells in other areas of the body where they are needed for proper immune function, Kim said.

"Treatment with suppressive T-cells has the potential to be a much more precise and targeted regulation of immune function than what currently exists," he said. "Treating without compromising a patient's has been a big problem in the field. We need to catch the thief without taking down the house, and this has that potential."

Kim discovered that naïve T-cells cultured in the presence of the hormone progesterone can be induced to become suppressive T-cells. This discovery and his work have been detailed in papers in the Journal of Immunology and the European Journal of Immunology. The group also filed a patent based on this work. The national Institutes of Health and the Crohn's and Colitis Foundation of America funded the research.

Studies in mice showed that about 500,000 suppressive T-cells are needed to have an effect on inflammation, Kim said.

"More work needs to be done to determine the appropriate dosage of cells for a human patient, but the amount of blood many people regularly donate would likely yield multiple treatments," he said.

Kim next plans to study at the molecular level how progesterone causes the cells to differentiate into suppressive T-cells and to uncover the proteins and protein receptors involved. An understanding of the molecular regulation of these cells could lead to a way to control their differentiation and function without using progesterone, he said.

Explore further: Maintaining immune balance involves an unconventional mechanism of T cell regulation

Related Stories

Maintaining immune balance involves an unconventional mechanism of T cell regulation

July 3, 2013
New findings from St. Jude Children's Research Hospital reveal an unconventional control mechanism involved in the production of specialized T cells that play a critical role in maintaining immune system balance. The research ...

Researchers probe the enigma of healing element that is also the enemy

April 3, 2013
The same factor in our immune system that is instrumental in enabling us to fight off severe and dangerous inflammatory ailments is also a player in doing the opposite at a later stage, causing the suppression of our immune ...

Pregnancy generates maternal immune-suppressive cells that protect the fetus

September 26, 2012
A new study published online in the journal Nature suggests it might be possible to develop vaccines to prevent premature birth and other pregnancy complications. If so, such vaccines would be the first intended to stimulate ...

Scientists discover kill-switch controls immune-suppressing cells

July 14, 2013
Scientists have uncovered the mechanism that controls whether cells that are able to suppress immune responses live or die.

Scientists find link between allergic and autoimmune diseases in mouse study

June 4, 2013
(Medical Xpress)—Scientists at the National Institutes of Health, and their colleagues, have discovered that a gene called BACH2 may play a central role in the development of diverse allergic and autoimmune diseases, such ...

Discovery of a new class of white blood cells uncovers target for better vaccine design

July 17, 2013
(Medical Xpress)—Scientists at A*STAR's Singapore Immunology Network (SIgN) have discovered a new class of white blood cells in human lung and gut tissues that play a critical role as the first line of defence against harmful ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.